A317400 Positive integers that have exactly ten representations of the form 1 + p1 * (1 + p2* ... * (1 + p_j)...), where [p1, ..., p_j] is a (possibly empty) list of distinct primes.
11306, 13289, 13693, 16402, 16446, 16491, 16699, 17031, 17113, 17116, 17263, 17576, 18412, 18602, 19825, 20023, 20411, 21022, 21256, 21676, 21936, 22271, 22543, 22716, 22764, 23038, 23233, 23332, 23353, 23580, 23599, 23886, 24036, 24053, 24064, 24531, 24646
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
Programs
-
Maple
b:= proc(n, s) option remember; local p, r; if n=1 then 1 else r:=0; for p in numtheory[factorset](n-1) minus s while r<11 do r:= r+b((n-1)/p, s union {p}) od; `if`(r<11, r, 11) fi end: a:= proc(n) option remember; local k; for k from `if`(n=1, 1, 1+a(n-1)) while b(k, {})<>10 do od; k end: seq(a(n), n=1..100);
Formula
A317241(a(n)) = 10.