cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317404 a(n) = 3*n*(2^n - 1).

Original entry on oeis.org

0, 3, 18, 63, 180, 465, 1134, 2667, 6120, 13797, 30690, 67551, 147420, 319449, 688086, 1474515, 3145680, 6684621, 14155722, 29884359, 62914500, 132120513, 276823998, 578813883, 1207959480, 2516582325, 5234491314, 10871635887, 22548578220, 46707769257, 96636764070
Offset: 0

Views

Author

Rigoberto Florez, Jul 27 2018

Keywords

Comments

Derivative of Fermat-Lucas polynomials evaluated at x=1.

Examples

			a(1) = 3 because the first Fermat-Lucas polynomial is 3*x, which has derivative 3.
a(2) = 18 because the second Fermat-Lucas polynomial is 9*x^2 - 4, which has derivative 18*x.
		

Crossrefs

Cf. A066524.

Programs

  • Mathematica
    CoefficientList[Series[(-3 (-x + 2 x^3))/(1-3 x + 2 x^2)^2, {x, 0, 29}], x] (* or *)
    LinearRecurrence[{6, -13, 12, -4}, {0, 3, 18, 63, 180}, 31] (* or *)
    Join[{0}, Array[3 # (2^# - 1) &, 30]] (* Michael De Vlieger, Jul 27 2018; amended for a(0) by Georg Fischer, Apr 03 2019*)
  • PARI
    x='x+O('x^31); concat(0, Vec(3*(1 - 2*x^2)/((1 - x)^2*(1 - 2*x)^2))) \\ Andrew Howroyd, Jul 27 2018; amended for a(0) by Georg Fischer, Apr 03 2019
    
  • PARI
    a(n) = 3*n*(2^n - 1); \\ Andrew Howroyd, Jul 27 2018

Formula

a(n) = 3*A066524(n). - Andrew Howroyd, Jul 27 2018
From Michael De Vlieger, Jul 27 2018: (Start)
G.f.: (-3*(-1 + 2*x^2))/(1 - 3*x + 2*x^2)^2.
a(n) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4).
(End)