A317444 Number of permutations of [n] whose lengths of increasing runs are distinct Fibonacci numbers.
1, 1, 1, 5, 6, 19, 212, 40, 757, 2170, 13546, 379084, 8978, 73195, 2702092, 772852, 38833826, 213557110, 2390871412, 150689939006, 9394670, 634504029, 4522073096, 63395566566, 5160905755362, 192831696582, 3068824154606, 289158899744046, 116561588867106
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..150
Programs
-
Maple
g:= (n, s)-> `if`(n in s or not (issqr(5*n^2+4) or issqr(5*n^2-4)), 0, 1): b:= proc(u, o, t, s) option remember; `if`(u+o=0, g(t, s), `if`(g(t, s)=1, add(b(u-j, o+j-1, 1, s union {t}) , j=1..u), 0)+ add(b(u+j-1, o-j, t+1, s), j=1..o)) end: a:= n-> b(n, 0$2, {}): seq(a(n), n=0..30);
-
Mathematica
g[n_, s_] := If[MemberQ[s, n] || !( IntegerQ@Sqrt[5*n^2 + 4] || IntegerQ@Sqrt[5*n^2 - 4]), 0, 1]; b[u_, o_, t_, s_] := b[u, o, t, s] = If[u + o == 0, g[t, s], If[g[t, s] == 1, Sum[b[u - j, o + j - 1, 1, s ~Union~ {t}], {j, 1, u}], 0] + Sum[b[u + j - 1, o - j, t + 1, s], {j, 1, o}]]; a[n_] := b[n, 0, 0, {}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 14 2021, after Alois P. Heinz *)