cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317445 Number of permutations of [n] whose lengths of increasing runs are distinct squares.

Original entry on oeis.org

1, 1, 0, 0, 1, 8, 0, 0, 0, 1, 18, 0, 0, 1428, 47998, 0, 1, 32, 0, 0, 9688, 505056, 0, 0, 0, 4085949, 284958912, 0, 0, 290824632172, 28643427712626, 0, 0, 0, 104902510, 9998016202, 1, 72, 23207824626842, 3008268832634364, 182778, 206173972520, 24290829974718, 0
Offset: 0

Views

Author

Alois P. Heinz, Jul 28 2018

Keywords

Crossrefs

Programs

  • Maple
    g:= (n, s)-> `if`(n in s or not issqr(n), 0, 1):
    b:= proc(u, o, t, s) option remember; `if`(u+o=0, g(t, s),
          `if`(g(t, s)=1, add(b(u-j, o+j-1, 1, s union {t})
           , j=1..u), 0)+ add(b(u+j-1, o-j, t+1, s), j=1..o))
        end:
    a:= n-> b(n, 0$2, {}):
    seq(a(n), n=0..50);
  • Mathematica
    g[n_, s_] := If[MemberQ[s, n] || !IntegerQ@Sqrt[n], 0, 1];
    b[u_, o_, t_, s_] := b[u, o, t, s] = If[u + o == 0, g[t, s],
         If[g[t, s] == 1, Sum[b[u - j, o + j - 1, 1, s ~Union~ {t}],
         {j, 1, u}], 0] + Sum[b[u + j - 1, o - j, t + 1, s], {j, 1, o}]];
    a[n_] := b[n, 0, 0, {}];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jul 24 2021, after Alois P. Heinz *)

Formula

a(n) = 0 <=> n in { A001422 }.
a(n) > 0 <=> n in { A003995 }.