A317445 Number of permutations of [n] whose lengths of increasing runs are distinct squares.
1, 1, 0, 0, 1, 8, 0, 0, 0, 1, 18, 0, 0, 1428, 47998, 0, 1, 32, 0, 0, 9688, 505056, 0, 0, 0, 4085949, 284958912, 0, 0, 290824632172, 28643427712626, 0, 0, 0, 104902510, 9998016202, 1, 72, 23207824626842, 3008268832634364, 182778, 206173972520, 24290829974718, 0
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Programs
-
Maple
g:= (n, s)-> `if`(n in s or not issqr(n), 0, 1): b:= proc(u, o, t, s) option remember; `if`(u+o=0, g(t, s), `if`(g(t, s)=1, add(b(u-j, o+j-1, 1, s union {t}) , j=1..u), 0)+ add(b(u+j-1, o-j, t+1, s), j=1..o)) end: a:= n-> b(n, 0$2, {}): seq(a(n), n=0..50);
-
Mathematica
g[n_, s_] := If[MemberQ[s, n] || !IntegerQ@Sqrt[n], 0, 1]; b[u_, o_, t_, s_] := b[u, o, t, s] = If[u + o == 0, g[t, s], If[g[t, s] == 1, Sum[b[u - j, o + j - 1, 1, s ~Union~ {t}], {j, 1, u}], 0] + Sum[b[u + j - 1, o - j, t + 1, s], {j, 1, o}]]; a[n_] := b[n, 0, 0, {}]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jul 24 2021, after Alois P. Heinz *)