A317130 Number of permutations of [n] whose lengths of increasing runs are triangular numbers.
1, 1, 1, 2, 7, 24, 93, 483, 2832, 17515, 123226, 978405, 8312802, 75966887, 756376739, 8070649675, 91320842018, 1099612368110, 14054043139523, 189320856378432, 2682416347625463, 39945105092501742, 623240458310527252, 10160826473676346731, 172871969109661492526
Offset: 0
Keywords
Examples
a(2) = 1: 21. a(3) = 2: 123, 321. a(4) = 7: 1243, 1342, 2134, 2341, 3124, 4123, 4321. a(5) = 24: 12543, 13542, 14532, 21354, 21453, 23541, 24531, 31254, 31452, 32145, 32451, 34521, 41253, 41352, 42135, 42351, 43125, 51243, 51342, 52134, 52341, 53124, 54123, 54321.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..400
Programs
-
Maple
g:= n-> `if`(issqr(8*n+1), 1, 0): b:= proc(u, o, t) option remember; `if`(u+o=0, g(t), `if`(g(t)=1, add(b(u-j, o+j-1, 1), j=1..u), 0)+ add(b(u+j-1, o-j, t+1), j=1..o)) end: a:= n-> b(n, 0$2): seq(a(n), n=0..27);
-
Mathematica
g[n_] := If[IntegerQ @ Sqrt[8n+1], 1, 0]; b[u_, o_, t_] := b[u, o, t] = If[u+o==0, g[t], If[g[t]==1, Sum[b[u-j, o+j-1, 1], {j, 1, u}], 0] + Sum[b[u+j-1, o-j, t+1], {j, 1, o}]]; a[n_] := b[n, 0, 0]; a /@ Range[0, 27] (* Jean-François Alcover, Apr 29 2020, after Alois P. Heinz *)