cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A317503 Triangle read by rows: T(0,0) = 1; T(n,k) = -2 T(n-1,k) + 3 * T(n-3,k-1) for k = 0..floor(n/3); T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, -2, 4, -8, 3, 16, -12, -32, 36, 64, -96, 9, -128, 240, -54, 256, -576, 216, -512, 1344, -720, 27, 1024, -3072, 2160, -216, -2048, 6912, -6048, 1080, 4096, -15360, 16128, -4320, 81, -8192, 33792, -41472, 15120, -810, 16384, -73728, 103680, -48384, 4860, -32768, 159744, -253440, 145152, -22680, 243
Offset: 0

Views

Author

Shara Lalo, Aug 02 2018

Keywords

Comments

The numbers in rows of the triangle are along "second layer" skew diagonals pointing top-left in center-justified triangle given in A303901 ((3-2*x)^n) and along "second layer" skew diagonals pointing top-right in center-justified triangle given in A317498 ((-2+3x)^n), see links. (Note: First layer skew diagonals in center-justified triangles of coefficients in expansions of (3-2*x)^n and (-2+3x)^n are given in A303941 and A302747 respectively.) The coefficients in the expansion of 1/(1 + 2x - 3x^3) are given by the sequence generated by the row sums. The row sums give A317499.

Examples

			Triangle begins:
       1;
      -2;
       4;
      -8,       3;
      16,     -12;
     -32,      36;
      64,     -96,       9;
    -128,     240,     -54;
     256,    -576,     216;
    -512,    1344,    -720,      27;
    1024,   -3072,    2160,    -216;
   -2048,    6912,   -6048,    1080;
    4096,  -15360,   16128,   -4320,     81;
   -8192,   33792,  -41472,   15120,   -810;
   16384,  -73728,  103680,  -48384,   4860;
  -32768,  159744, -253440,  145152, -22680,   243;
   65536, -344064,  608256, -414720,  90720, -2916;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 136, 396, 397.

Crossrefs

Row sums give A317499.
Cf. A090388.

Programs

  • Mathematica
    t[n_, k_] := t[n, k] = (-2)^(n - 3k) * 3^k/((n - 3 k)! k!) * (n - 2 k)!; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/3]} ]  // Flatten
    t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, -2 * t[n - 1, k] + 3 * t[n - 3, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/3]}] // Flatten

Formula

T(n,k) = (-2)^(n - 3k) * 3^k / ((n - 3k)! k!) * (n - 2k)! where n is a nonnegative integer and k = 0..floor(n/3).
Showing 1-1 of 1 results.