A317504 Triangle read by rows: T(0,0) = 1; T(n,k) = 2 T(n-1,k) - T(n-3,k-1) for k = 0..floor(n/3); T(n,k)=0 for n or k < 0.
1, 2, 4, 8, -1, 16, -4, 32, -12, 64, -32, 1, 128, -80, 6, 256, -192, 24, 512, -448, 80, -1, 1024, -1024, 240, -8, 2048, -2304, 672, -40, 4096, -5120, 1792, -160, 1, 8192, -11264, 4608, -560, 10, 16384, -24576, 11520, -1792, 60, 32768, -53248, 28160, -5376, 280, -1, 65536, -114688, 67584, -15360, 1120, -12
Offset: 0
Examples
Triangle begins: 1; 2; 4; 8, -1; 16, -4; 32, -12; 64, -32, 1; 128, -80, 6; 256, -192, 24; 512, -448, 80, -1; 1024, -1024, 240, -8; 2048, -2304, 672, -40; 4096, -5120, 1792, -160, 1; 8192, -11264, 4608, -560, 10; 16384, -24576, 11520, -1792, 60; 32768, -53248, 28160, -5376, 280, -1; 65536, -114688, 67584, -15360, 1120, -12; 131072, -245760, 159744, -42240, 4032, -84; 262144, -524288, 372736, -112640, 13440, -448, 1;
References
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 139-141, 391-393.
Links
Programs
-
Mathematica
t[n_, k_] := t[n, k] = 2^(n - 3k) * (-1)^k/((n - 3 k)! k!) * (n - 2 k)!; Table[t[n, k], {n, 0, 16}, {k, 0, Floor[n/3]} ] // Flatten t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2 * t[n - 1, k] - t[n - 3, k - 1]]; Table[t[n, k], {n, 0, 16}, {k, 0, Floor[n/3]}] // Flatten
Formula
T(n,k) = 2^(n - 3k) * (-2)^k / ((n - 3k)! k!) * (n - 2k)! where n is a nonnegative integer and k = 0..floor(n/3).
Comments