A317506 Triangle read by rows: T(0,0) = 1; T(n,k) = 2 T(n-1,k) - T(n-4,k-1) for 0 <= k <= floor(n/4); T(n,k)=0 for n or k < 0.
1, 2, 4, 8, 16, -1, 32, -4, 64, -12, 128, -32, 256, -80, 1, 512, -192, 6, 1024, -448, 24, 2048, -1024, 80, 4096, -2304, 240, -1, 8192, -5120, 672, -8, 16384, -11264, 1792, -40, 32768, -24576, 4608, -160, 65536, -53248, 11520, -560, 1, 131072, -114688, 28160, -1792, 10
Offset: 0
Examples
Triangle begins: 1; 2; 4; 8; 16, -1; 32, -4; 64, -12; 128, -32; 256, -80, 1; 512, -192, 6; 1024, -448, 24; 2048, -1024, 80; 4096, -2304, 240, -1; 8192, -5120, 672, -8; 16384, -11264, 1792, -40; 32768, -24576, 4608, -160; 65536, -53248, 11520, -560, 1; 131072, -114688, 28160, -1792, 10; 262144, -245760, 67584, -5376, 60;
References
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3.
Links
Programs
-
Mathematica
t[n_, k_] := t[n, k] = 2^(n - 4 k) * (-1)^k/((n - 4 k)! k!) * (n - 3 k)!; Table[t[n, k], {n, 0, 16}, {k, 0, Floor[n/4]} ] // Flatten t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2 * t[n - 1, k] - t[n - 4, k - 1]]; Table[t[n, k], {n, 0, 16}, {k, 0, Floor[n/4]}] // Flatten
Formula
T(n,k) = 2^(n - 4*k) * (-1)^k / ((n - 4*k)! k!) * (n - 3*k)! where n >= 0 and 0 <= k <= floor(n/4).
Comments