A317533 Regular triangle read rows: T(n,k) = number of non-isomorphic multiset partitions of size n and length k.
1, 2, 2, 3, 4, 3, 5, 14, 9, 5, 7, 28, 33, 16, 7, 11, 69, 104, 74, 29, 11, 15, 134, 294, 263, 142, 47, 15, 22, 285, 801, 948, 599, 263, 77, 22, 30, 536, 2081, 3058, 2425, 1214, 453, 118, 30, 42, 1050, 5212, 9769, 9276, 5552, 2322, 761, 181, 42, 56, 1918, 12645, 29538, 34172, 23770, 11545, 4179, 1223, 267, 56
Offset: 1
Examples
Non-isomorphic representatives of the T(3,2) = 4 multiset partitions: {{1},{1,1}} {{1},{1,2}} {{1},{2,2}} {{1},{2,3}} Triangle begins: 1 2 2 3 4 3 5 14 9 5 7 28 33 16 7 11 69 104 74 29 11 15 134 294 263 142 47 15
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 50 rows)
Crossrefs
Programs
-
Mathematica
permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m]; c[p_List, q_List, k_] := SeriesCoefficient[1/Product[(1 - x^LCM[p[[i]], q[[j]]])^GCD[p[[i]], q[[j]]], {j, 1, Length[q]}, {i, 1, Length[p]}], {x, 0, k}]; M[m_, n_, k_] := Module[{s = 0}, Do[Do[s += permcount[p]*permcount[q]*c[p, q, k], {q, IntegerPartitions[n]}], {p, IntegerPartitions[m]}]; s/(m!*n!)]; T[n_, k_] := M[k, n, n] - M[k - 1, n, n]; Table[T[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 08 2020, after Andrew Howroyd *)
-
PARI
\\ See A318795 for definition of M. T(n,k)={M(k, n, n) - M(k-1, n, n)} for(n=1, 10, for(k=1, n, print1(T(n,k),", "));print) \\ Andrew Howroyd, Dec 28 2019
-
PARI
\\ Faster version. permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} K(q, t, n)={1/prod(j=1, #q, (1-x^lcm(t, q[j]) + O(x*x^n))^gcd(t, q[j]))} G(m,n)={my(s=0); forpart(q=m, s+=permcount(q)*exp(sum(t=1, n, (K(q, t, n)-1)/t) + O(x*x^n))); s/m!} A(n,m=n)={my(p=sum(k=0, m, G(k,n)*y^k)*(1-y)); matrix(n, m, n, k, polcoef(polcoef(p, n, x), k, y))} { my(T=A(10)); for(n=1, #T, print(T[n,1..n])) } \\ Andrew Howroyd, Aug 30 2020
Extensions
Terms a(29) and beyond from Andrew Howroyd, Dec 28 2019