cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317533 Regular triangle read rows: T(n,k) = number of non-isomorphic multiset partitions of size n and length k.

Original entry on oeis.org

1, 2, 2, 3, 4, 3, 5, 14, 9, 5, 7, 28, 33, 16, 7, 11, 69, 104, 74, 29, 11, 15, 134, 294, 263, 142, 47, 15, 22, 285, 801, 948, 599, 263, 77, 22, 30, 536, 2081, 3058, 2425, 1214, 453, 118, 30, 42, 1050, 5212, 9769, 9276, 5552, 2322, 761, 181, 42, 56, 1918, 12645, 29538, 34172, 23770, 11545, 4179, 1223, 267, 56
Offset: 1

Views

Author

Gus Wiseman, Jul 30 2018

Keywords

Examples

			Non-isomorphic representatives of the T(3,2) = 4 multiset partitions:
  {{1},{1,1}}
  {{1},{1,2}}
  {{1},{2,2}}
  {{1},{2,3}}
Triangle begins:
    1
    2    2
    3    4    3
    5   14    9    5
    7   28   33   16    7
   11   69  104   74   29   11
   15  134  294  263  142   47   15
		

Crossrefs

Row sums are A007716. First and last columns are both A000041.

Programs

  • Mathematica
    permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    c[p_List, q_List, k_] := SeriesCoefficient[1/Product[(1 - x^LCM[p[[i]], q[[j]]])^GCD[p[[i]], q[[j]]], {j, 1, Length[q]}, {i, 1, Length[p]}], {x, 0, k}];
    M[m_, n_, k_] := Module[{s = 0}, Do[Do[s += permcount[p]*permcount[q]*c[p, q, k], {q, IntegerPartitions[n]}], {p, IntegerPartitions[m]}]; s/(m!*n!)];
    T[n_, k_] := M[k, n, n] - M[k - 1, n, n];
    Table[T[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 08 2020, after Andrew Howroyd *)
  • PARI
    \\ See A318795 for definition of M.
    T(n,k)={M(k, n, n) - M(k-1, n, n)}
    for(n=1, 10, for(k=1, n, print1(T(n,k),", "));print) \\ Andrew Howroyd, Dec 28 2019
    
  • PARI
    \\ Faster version.
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, n)={1/prod(j=1, #q, (1-x^lcm(t, q[j]) + O(x*x^n))^gcd(t, q[j]))}
    G(m,n)={my(s=0); forpart(q=m, s+=permcount(q)*exp(sum(t=1, n, (K(q, t, n)-1)/t) + O(x*x^n))); s/m!}
    A(n,m=n)={my(p=sum(k=0, m, G(k,n)*y^k)*(1-y)); matrix(n, m, n, k, polcoef(polcoef(p, n, x), k, y))}
    { my(T=A(10)); for(n=1, #T, print(T[n,1..n])) } \\ Andrew Howroyd, Aug 30 2020

Extensions

Terms a(29) and beyond from Andrew Howroyd, Dec 28 2019