A321468
Number of factorizations of n! into factors > 1 that can be obtained by taking the multiset union of a choice of factorizations of each positive integer from 2 to n into factors > 1.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 4, 4, 10, 20, 40, 40, 116, 116, 232, 464, 1440, 1440, 4192, 4192, 11640, 23280, 46560, 46560, 157376
Offset: 0
The a(2) = 1 through a(8) = 10 factorizations:
2 2*3 2*3*4 2*3*4*5 2*3*4*5*6 2*3*4*5*6*7 2*3*4*5*6*7*8
2*2*2*3 2*2*2*3*5 2*2*2*3*5*6 2*2*2*3*5*6*7 2*2*2*3*5*6*7*8
2*2*3*3*4*5 2*2*3*3*4*5*7 2*2*3*3*4*5*7*8
2*2*2*2*3*3*5 2*2*2*2*3*3*5*7 2*2*3*4*4*5*6*7
2*2*2*2*3*3*5*7*8
2*2*2*2*3*4*5*6*7
2*2*2*3*3*4*4*5*7
2*2*2*2*2*2*3*5*6*7
2*2*2*2*2*3*3*4*5*7
2*2*2*2*2*2*2*3*3*5*7
For example, 2*2*2*2*2*2*3*5*6*7 = (2)*(3)*(2*2)*(5)*(6)*(7)*(2*2*2), so (2*2*2*2*2*2*3*5*6*7) is counted under a(8).
Cf.
A001055,
A066723,
A076716,
A157612,
A242422,
A265947,
A300383,
A317144,
A317145,
A317534,
A321467,
A321470,
A321471,
A321472.
-
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
Table[Length[Union[Sort/@Join@@@Tuples[facs/@Range[2,n]]]],{n,10}]
A321467
Number of factorizations of n! into factors > 1 that can be obtained by taking the block-products of some set partition of {2,3,...,n}.
Original entry on oeis.org
1, 1, 1, 2, 5, 15, 47, 183, 719, 3329, 14990, 83798, 393864, 2518898
Offset: 0
The a(1) = 1 through a(5) = 15 factorizations:
() (2) (6) (24) (120)
(2*3) (3*8) (2*60)
(4*6) (3*40)
(2*12) (4*30)
(2*3*4) (5*24)
(6*20)
(8*15)
(10*12)
(3*5*8)
(4*5*6)
(2*3*20)
(2*4*15)
(2*5*12)
(3*4*10)
(2*3*4*5)
For example, 10*12 = (2*5)*(3*4), so (10*12) is counted under a(5).
Cf.
A001055,
A066723,
A157612,
A242422,
A265947,
A317141,
A317144,
A317145,
A317534,
A321468,
A321470,
A321471,
A321472,
A321514.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
Table[Length[Union[Sort/@Apply[Times,sps[Range[2,n]],{2}]]],{n,10}]
A322260
Numbers k such that the poset of multiset partitions of a multiset whose multiplicities are the prime indices of k is a lattice.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 16, 32
Offset: 1
- R. P Stanley, Enumerative Combinatorics Vol. 1, Sec. 3.3.
Showing 1-3 of 3 results.
Comments