A321470 Number of integer partitions of the n-th triangular number 1 + 2 + ... + n that can be obtained by choosing a partition of each integer from 1 to n and combining.
1, 1, 2, 5, 16, 54, 212, 834, 3558, 15394, 69512, 313107, 1474095, 6877031, 32877196
Offset: 0
Examples
The a(1) = 1 through a(4) = 16 partitions: (1) (21) (321) (4321) (111) (2211) (32221) (3111) (33211) (21111) (42211) (111111) (43111) (222211) (322111) (331111) (421111) (2221111) (3211111) (4111111) (22111111) (31111111) (211111111) (1111111111) The partition (222211) is the combination of (22)(21)(2)(1), so is counted under a(4). The partition (322111) is the combination of (22)(3)(11)(1), (31)(21)(2)(1), or (211)(3)(2)(1), so is also counted under a(4).
Crossrefs
Programs
-
Mathematica
Table[Length[Union[Sort/@Join@@@Tuples[IntegerPartitions/@Range[1,n]]]],{n,6}]
-
Python
from collections import Counter from itertools import count, islice from sympy.utilities.iterables import partitions def A321470_gen(): # generator of terms aset = {(1,)} yield 1 for n in count(2): yield len(aset) aset = {tuple(sorted(p+q)) for p in aset for q in (tuple(sorted(Counter(q).elements())) for q in partitions(n))} A321470_list = list(islice(A321470_gen(),10)) # Chai Wah Wu, Sep 20 2023
Formula
a(n) <= A173519(n). - David A. Corneth, Sep 20 2023
Extensions
a(9)-a(11) from Alois P. Heinz, Nov 12 2018
a(12)-a(13) from Chai Wah Wu, Nov 13 2018
a(14) from Chai Wah Wu, Sep 20 2023
Comments