cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A321470 Number of integer partitions of the n-th triangular number 1 + 2 + ... + n that can be obtained by choosing a partition of each integer from 1 to n and combining.

Original entry on oeis.org

1, 1, 2, 5, 16, 54, 212, 834, 3558, 15394, 69512, 313107, 1474095, 6877031, 32877196
Offset: 0

Views

Author

Gus Wiseman, Nov 11 2018

Keywords

Comments

a(n) is the number of integer partitions finer than (n, ..., 3, 2, 1) in the poset of integer partitions of 1 + 2 + ... + n ordered by refinement.
a(n+1)/a(n) appears to converge as n -> oo. - Chai Wah Wu, Nov 14 2018

Examples

			The a(1) = 1 through a(4) = 16 partitions:
  (1)  (21)   (321)     (4321)
       (111)  (2211)    (32221)
              (3111)    (33211)
              (21111)   (42211)
              (111111)  (43111)
                        (222211)
                        (322111)
                        (331111)
                        (421111)
                        (2221111)
                        (3211111)
                        (4111111)
                        (22111111)
                        (31111111)
                        (211111111)
                        (1111111111)
The partition (222211) is the combination of (22)(21)(2)(1), so is counted under a(4). The partition (322111) is the combination of (22)(3)(11)(1), (31)(21)(2)(1), or (211)(3)(2)(1), so is also counted under a(4).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Union[Sort/@Join@@@Tuples[IntegerPartitions/@Range[1,n]]]],{n,6}]
  • Python
    from collections import Counter
    from itertools import count, islice
    from sympy.utilities.iterables import partitions
    def A321470_gen(): # generator of terms
        aset = {(1,)}
        yield 1
        for n in count(2):
            yield len(aset)
            aset = {tuple(sorted(p+q)) for p in aset for q in (tuple(sorted(Counter(q).elements())) for q in partitions(n))}
    A321470_list = list(islice(A321470_gen(),10)) # Chai Wah Wu, Sep 20 2023

Formula

a(n) <= A173519(n). - David A. Corneth, Sep 20 2023

Extensions

a(9)-a(11) from Alois P. Heinz, Nov 12 2018
a(12)-a(13) from Chai Wah Wu, Nov 13 2018
a(14) from Chai Wah Wu, Sep 20 2023

A321471 Heinz numbers of integer partitions that can be partitioned into blocks with sums {1, 2, ..., k} for some k.

Original entry on oeis.org

2, 6, 8, 30, 36, 40, 48, 64, 210, 252, 270, 280, 300, 324, 336, 360, 400, 432, 448, 480, 576, 640, 768, 1024, 2310, 2772, 2940, 2970, 3080, 3150, 3300, 3528, 3564, 3696, 3780, 3920, 3960, 4050, 4200, 4400, 4500, 4536, 4704, 4752, 4860, 4928, 5040, 5280, 5400
Offset: 1

Views

Author

Gus Wiseman, Nov 13 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
These partitions are those that are finer than (k, ..., 3, 2, 1) in the poset of integer partitions of 1 + 2 + ... + k, for some k, ordered by refinement.

Examples

			The sequence of all integer partitions whose Heinz numbers are in the sequence begins: (1), (21), (111), (321), (2211), (3111), (21111), (111111), (4321), (42211), (32221), (43111), (33211), (222211), (421111), (322111), (331111), (2221111), (4111111), (3211111), (22111111), (31111111), (211111111), (1111111111).
The partition (322111) has Heinz number 360 and can be partitioned as ((1)(2)(3)(112)), ((1)(2)(12)(13)), or ((1)(11)(3)(22)), so 360 belongs to the sequence.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[2,1000],Select[Map[Total[primeMS[#]]&,facs[#],{2}],Sort[#]==Range[Max@@#]&]!={}&]

A321467 Number of factorizations of n! into factors > 1 that can be obtained by taking the block-products of some set partition of {2,3,...,n}.

Original entry on oeis.org

1, 1, 1, 2, 5, 15, 47, 183, 719, 3329, 14990, 83798, 393864, 2518898
Offset: 0

Views

Author

Gus Wiseman, Nov 11 2018

Keywords

Comments

a(n) is the number of factorizations coarser than (2*3*...*n) in the poset of factorizations of n! into factors > 1, ordered by refinement.

Examples

			The a(1) = 1 through a(5) = 15 factorizations:
  ()  (2)  (6)    (24)     (120)
           (2*3)  (3*8)    (2*60)
                  (4*6)    (3*40)
                  (2*12)   (4*30)
                  (2*3*4)  (5*24)
                           (6*20)
                           (8*15)
                           (10*12)
                           (3*5*8)
                           (4*5*6)
                           (2*3*20)
                           (2*4*15)
                           (2*5*12)
                           (3*4*10)
                           (2*3*4*5)
For example, 10*12 = (2*5)*(3*4), so (10*12) is counted under a(5).
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Union[Sort/@Apply[Times,sps[Range[2,n]],{2}]]],{n,10}]

A321472 Heinz numbers of integer partitions whose parts can be further partitioned and flattened to obtain the partition (k, ..., 3, 2, 1) for some k.

Original entry on oeis.org

2, 5, 6, 13, 21, 22, 25, 29, 30, 46, 47, 57, 73, 85, 86, 91, 102, 107, 121, 123, 130, 142, 147, 151, 154, 165, 175, 185, 197, 201, 206, 210, 217, 222, 257, 298, 299
Offset: 1

Views

Author

Gus Wiseman, Nov 13 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
These partitions are those that are coarser than (k, ..., 3, 2, 1) in the poset of integer partitions of 1 + 2 + ... + k, for some k, ordered by refinement.

Examples

			The sequence of all integer partitions whose Heinz numbers are in the sequence begins: (1), (3), (2,1), (6), (4,2), (5,1), (3,3), (10), (3,2,1), (9,1), (15), (8,2), (21), (7,3), (14,1), (6,4), (7,2,1), (28), (5,5), (13,2), (6,3,1), (20,1), (4,4,2), (36), (5,4,1), (5,3,2), (4,3,3), (12,3), (45), (19,2), (27,1), (4,3,2,1).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[2,200],Select[Sort/@Join@@@Tuples[IntegerPartitions/@primeMS[#]],Sort[#]==Range[Max@@#]&]!={}&]

A321514 Number of ways to choose a factorization of each integer from 2 to n into factors > 1.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 4, 12, 24, 48, 48, 192, 192, 384, 768, 3840, 3840, 15360, 15360, 61440, 122880, 245760, 245760, 1720320, 3440640, 6881280, 20643840, 82575360, 82575360, 412876800, 412876800, 2890137600, 5780275200, 11560550400, 23121100800, 208089907200
Offset: 1

Views

Author

Gus Wiseman, Nov 11 2018

Keywords

Examples

			The a(8) = 12 ways to choose a factorization of each integer from 2 to 8:
  (2)*(3)*(4)*(5)*(6)*(7)*(8)
  (2)*(3)*(4)*(5)*(6)*(7)*(2*4)
  (2)*(3)*(4)*(5)*(2*3)*(7)*(8)
  (2)*(3)*(2*2)*(5)*(6)*(7)*(8)
  (2)*(3)*(4)*(5)*(6)*(7)*(2*2*2)
  (2)*(3)*(4)*(5)*(2*3)*(7)*(2*4)
  (2)*(3)*(2*2)*(5)*(6)*(7)*(2*4)
  (2)*(3)*(2*2)*(5)*(2*3)*(7)*(8)
  (2)*(3)*(4)*(5)*(2*3)*(7)*(2*2*2)
  (2)*(3)*(2*2)*(5)*(6)*(7)*(2*2*2)
  (2)*(3)*(2*2)*(5)*(2*3)*(7)*(2*4)
  (2)*(3)*(2*2)*(5)*(2*3)*(7)*(2*2*2)
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Array[Length[facs[#]]&,n,1,Times],{n,30}]

Formula

a(n) = Product_{k = 1..n} A001055(k).

A381807 Number of multisets that can be obtained by choosing a constant partition of each m = 0..n and taking the multiset union.

Original entry on oeis.org

1, 1, 2, 4, 12, 24, 92, 184, 704, 2016, 7600, 15200, 80664, 161328, 601696, 2198824, 9868544, 19737088, 102010480, 204020960
Offset: 0

Views

Author

Gus Wiseman, Mar 13 2025

Keywords

Comments

A constant partition is a multiset whose parts are all equal. There are A000005(n) constant partitions of n.

Examples

			The a(1) = 1 through a(4) = 12 multisets:
  {1}  {1,2}    {1,2,3}        {1,2,3,4}
       {1,1,1}  {1,1,1,3}      {1,1,1,3,4}
                {1,1,1,1,2}    {1,2,2,2,3}
                {1,1,1,1,1,1}  {1,1,1,1,2,4}
                               {1,1,1,2,2,3}
                               {1,1,1,1,1,1,4}
                               {1,1,1,1,1,2,3}
                               {1,1,1,1,2,2,2}
                               {1,1,1,1,1,1,1,3}
                               {1,1,1,1,1,1,2,2}
                               {1,1,1,1,1,1,1,1,2}
                               {1,1,1,1,1,1,1,1,1,1}
		

Crossrefs

The number of possible choices was A066843.
Multiset partitions into constant blocks: A006171, A279784, A295935.
Choosing prime factors: A355746, A355537, A327486, A355744, A355742, A355741.
Choosing divisors: A355747, A355733.
Sets of constant multisets with distinct sums: A381635, A381636, A381716.
Strict instead of constant partitions: A381808, A058694, A152827.
A000041 counts integer partitions, strict A000009, constant A000005.
A000688 counts multiset partitions into constant blocks.
A050361 and A381715 count multiset partitions into constant multisets.
A066723 counts partitions coarser than {1..n}, primorial case of A317141.
A265947 counts refinement-ordered pairs of integer partitions.
A321470 counts partitions finer than {1..n}, primorial case of A300383.

Programs

  • Mathematica
    Table[Length[Union[Sort/@Join@@@Tuples[Select[IntegerPartitions[#],SameQ@@#&]&/@Range[n]]]],{n,0,10}]

Formula

Primorial case of A381453: a(n) = A381453(A002110(n)).

Extensions

a(16)-a(19) from Christian Sievers, Jun 04 2025

A381808 Number of multisets that can be obtained by choosing a strict integer partition of m for each m = 0..n and taking the multiset union.

Original entry on oeis.org

1, 1, 1, 2, 4, 12, 38, 145, 586, 2619, 12096, 58370, 285244, 1436815, 7281062, 37489525, 193417612
Offset: 0

Views

Author

Gus Wiseman, Mar 14 2025

Keywords

Examples

			The a(1) = 1 through a(5) = 12 multisets:
  {1}  {1,2}  {1,2,3}    {1,2,3,4}      {1,2,3,4,5}
              {1,1,2,2}  {1,1,2,2,4}    {1,1,2,2,4,5}
                         {1,1,2,3,3}    {1,1,2,3,3,5}
                         {1,1,1,2,2,3}  {1,1,2,3,4,4}
                                        {1,2,2,3,3,4}
                                        {1,1,1,2,2,3,5}
                                        {1,1,1,2,2,4,4}
                                        {1,1,1,2,3,3,4}
                                        {1,1,2,2,2,3,4}
                                        {1,1,2,2,3,3,3}
                                        {1,1,1,1,2,2,3,4}
                                        {1,1,1,2,2,2,3,3}
		

Crossrefs

Set systems: A050342, A116539, A296120, A318361.
The number of possible choices was A152827, non-strict A058694.
Set multipartitions with distinct sums: A279785, A381718.
Choosing prime factors: A355746, A355537, A327486, A355744, A355742, A355741.
Choosing divisors: A355747, A355733.
Constant instead of strict partitions: A381807, A066843.
A000041 counts integer partitions, strict A000009, constant A000005.
A066723 counts partitions coarser than {1..n}, primorial case of A317141.
A265947 counts refinement-ordered pairs of integer partitions.
A321470 counts partitions finer than {1..n}, primorial case of A300383.

Programs

  • Mathematica
    Table[Length[Union[Sort/@Join@@@Tuples[Select[IntegerPartitions[#],UnsameQ@@#&]&/@Range[n]]]],{n,0,10}]

Extensions

a(12)-a(16) from Christian Sievers, Jun 04 2025

A322077 In the ranked poset of integer partitions ordered by refinement, number of integer partitions coarser (greater) than or equal to the integer partition whose multiplicities are the prime indices of n in weakly decreasing order.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 5, 8, 6, 7, 9, 11, 10, 12, 13, 15, 18, 22, 15, 19, 14, 30, 24, 22, 21, 40, 23, 42, 29, 56, 36, 27, 29, 34, 47, 77, 41, 39, 40
Offset: 1

Views

Author

Gus Wiseman, Nov 25 2018

Keywords

Comments

This partition (reversed row n of A305936) is generally not the same as the integer partition with Heinz number n. For example, 12 is the Heinz number of (2,1,1), while the integer partition whose multiplicities are (2,1,1) is (3,2,1,1).

Examples

			The list of a(1) = 1 through a(18) = 18 coarser partitions:
  ()  (1)  (2)   (3)   (3)    (4)    (4)     (6)    (6)     (5)     (5)
           (11)  (21)  (21)   (22)   (22)    (33)   (33)    (32)    (32)
                       (111)  (31)   (31)    (42)   (42)    (41)    (41)
                              (211)  (211)   (51)   (51)    (221)   (221)
                                     (1111)  (321)  (222)   (311)   (311)
                                                    (321)   (2111)  (2111)
                                                    (411)           (11111)
                                                    (2211)
.
  (7)     (6)       (6)      (7)      (10)    (7)        (9)
  (43)    (33)      (33)     (43)     (55)    (43)       (54)
  (52)    (42)      (42)     (52)     (64)    (52)       (63)
  (61)    (51)      (51)     (61)     (73)    (61)       (72)
  (322)   (222)     (222)    (322)    (82)    (322)      (81)
  (331)   (321)     (321)    (331)    (91)    (331)      (333)
  (421)   (411)     (411)    (421)    (433)   (421)      (432)
  (511)   (2211)    (2211)   (511)    (442)   (511)      (441)
  (3211)  (3111)    (3111)   (2221)   (532)   (2221)     (522)
          (21111)   (21111)  (3211)   (541)   (3211)     (531)
          (111111)           (4111)   (631)   (4111)     (621)
                             (22111)  (721)   (22111)    (711)
                                      (4321)  (31111)    (3222)
                                              (211111)   (3321)
                                              (1111111)  (4221)
                                                         (4311)
                                                         (5211)
                                                         (32211)
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Table[Length[Union[Sort/@Apply[Plus,mps[nrmptn[n]],{2}]]],{n,20}]
Showing 1-8 of 8 results.