A242422
Numbers in whose prime factorization the indices of primes sum to a triangular number.
Original entry on oeis.org
1, 2, 5, 6, 8, 13, 21, 22, 25, 27, 28, 29, 30, 36, 40, 46, 47, 48, 57, 64, 73, 76, 85, 86, 91, 102, 107, 117, 121, 123, 130, 136, 142, 147, 151, 154, 156, 164, 165, 175, 185, 189, 196, 197, 198, 201, 206, 208, 210, 217, 220, 222, 225, 243, 250, 252, 257, 264, 268, 270, 279, 280, 296, 298, 299, 300
Offset: 1
1 is present as it has an empty factorization, for which the sum of prime indices is zero, and zero is also a triangular number.
2 = p_1 is present as 1 is a triangular number.
6 = p_1 * p_2 is present, as 1+2 = 3 is a triangular number.
300 = 2*2*3*5*5 = p_1 * p_1 * p_2 * p_3 * p_3 is present, as 1+1+2+3+3 = 10 is a triangular number.
Any primorial number p_1 * p_2 * p_3 * ... * p_n is present, as 1+2+3+...+n is by definition a triangular number.
The sequence of all integer partitions whose Heinz numbers are in the sequence begins: (), (1), (3), (2,1), (1,1,1), (6), (4,2), (5,1), (3,3), (2,2,2), (4,1,1), (10), (3,2,1), (2,2,1,1), (3,1,1,1), (9,1), (15), (2,1,1,1,1), (8,2), (1,1,1,1,1,1), (21), (8,1,1), (7,3), (14,1), (6,4). - _Gus Wiseman_, Nov 13 2018
- Martin Gardner, Colossal Book of Mathematics, Chapter 34, Bulgarian Solitaire and Other Seemingly Endless Tasks, pp. 455-467, W. W. Norton & Company, 2001.
A002110 (primorial numbers) is a subsequence.
-
triQ[n_]:=Module[{k,i},For[k=n;i=1,k>0,i++,k-=i];k==0];
Select[Range[100],triQ[Total[Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]]]&] (* Gus Wiseman, Nov 13 2018 *)
A321468
Number of factorizations of n! into factors > 1 that can be obtained by taking the multiset union of a choice of factorizations of each positive integer from 2 to n into factors > 1.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 4, 4, 10, 20, 40, 40, 116, 116, 232, 464, 1440, 1440, 4192, 4192, 11640, 23280, 46560, 46560, 157376
Offset: 0
The a(2) = 1 through a(8) = 10 factorizations:
2 2*3 2*3*4 2*3*4*5 2*3*4*5*6 2*3*4*5*6*7 2*3*4*5*6*7*8
2*2*2*3 2*2*2*3*5 2*2*2*3*5*6 2*2*2*3*5*6*7 2*2*2*3*5*6*7*8
2*2*3*3*4*5 2*2*3*3*4*5*7 2*2*3*3*4*5*7*8
2*2*2*2*3*3*5 2*2*2*2*3*3*5*7 2*2*3*4*4*5*6*7
2*2*2*2*3*3*5*7*8
2*2*2*2*3*4*5*6*7
2*2*2*3*3*4*4*5*7
2*2*2*2*2*2*3*5*6*7
2*2*2*2*2*3*3*4*5*7
2*2*2*2*2*2*2*3*3*5*7
For example, 2*2*2*2*2*2*3*5*6*7 = (2)*(3)*(2*2)*(5)*(6)*(7)*(2*2*2), so (2*2*2*2*2*2*3*5*6*7) is counted under a(8).
Cf.
A001055,
A066723,
A076716,
A157612,
A242422,
A265947,
A300383,
A317144,
A317145,
A317534,
A321467,
A321470,
A321471,
A321472.
-
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
Table[Length[Union[Sort/@Join@@@Tuples[facs/@Range[2,n]]]],{n,10}]
A321470
Number of integer partitions of the n-th triangular number 1 + 2 + ... + n that can be obtained by choosing a partition of each integer from 1 to n and combining.
Original entry on oeis.org
1, 1, 2, 5, 16, 54, 212, 834, 3558, 15394, 69512, 313107, 1474095, 6877031, 32877196
Offset: 0
The a(1) = 1 through a(4) = 16 partitions:
(1) (21) (321) (4321)
(111) (2211) (32221)
(3111) (33211)
(21111) (42211)
(111111) (43111)
(222211)
(322111)
(331111)
(421111)
(2221111)
(3211111)
(4111111)
(22111111)
(31111111)
(211111111)
(1111111111)
The partition (222211) is the combination of (22)(21)(2)(1), so is counted under a(4). The partition (322111) is the combination of (22)(3)(11)(1), (31)(21)(2)(1), or (211)(3)(2)(1), so is also counted under a(4).
Cf.
A000217,
A001970,
A002846,
A063834,
A066723,
A173519,
A213427,
A242422,
A261049,
A265947,
A271619,
A299201,
A300383,
A317141.
-
Table[Length[Union[Sort/@Join@@@Tuples[IntegerPartitions/@Range[1,n]]]],{n,6}]
-
from collections import Counter
from itertools import count, islice
from sympy.utilities.iterables import partitions
def A321470_gen(): # generator of terms
aset = {(1,)}
yield 1
for n in count(2):
yield len(aset)
aset = {tuple(sorted(p+q)) for p in aset for q in (tuple(sorted(Counter(q).elements())) for q in partitions(n))}
A321470_list = list(islice(A321470_gen(),10)) # Chai Wah Wu, Sep 20 2023
A321471
Heinz numbers of integer partitions that can be partitioned into blocks with sums {1, 2, ..., k} for some k.
Original entry on oeis.org
2, 6, 8, 30, 36, 40, 48, 64, 210, 252, 270, 280, 300, 324, 336, 360, 400, 432, 448, 480, 576, 640, 768, 1024, 2310, 2772, 2940, 2970, 3080, 3150, 3300, 3528, 3564, 3696, 3780, 3920, 3960, 4050, 4200, 4400, 4500, 4536, 4704, 4752, 4860, 4928, 5040, 5280, 5400
Offset: 1
The sequence of all integer partitions whose Heinz numbers are in the sequence begins: (1), (21), (111), (321), (2211), (3111), (21111), (111111), (4321), (42211), (32221), (43111), (33211), (222211), (421111), (322111), (331111), (2221111), (4111111), (3211111), (22111111), (31111111), (211111111), (1111111111).
The partition (322111) has Heinz number 360 and can be partitioned as ((1)(2)(3)(112)), ((1)(2)(12)(13)), or ((1)(11)(3)(22)), so 360 belongs to the sequence.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
Select[Range[2,1000],Select[Map[Total[primeMS[#]]&,facs[#],{2}],Sort[#]==Range[Max@@#]&]!={}&]
A321467
Number of factorizations of n! into factors > 1 that can be obtained by taking the block-products of some set partition of {2,3,...,n}.
Original entry on oeis.org
1, 1, 1, 2, 5, 15, 47, 183, 719, 3329, 14990, 83798, 393864, 2518898
Offset: 0
The a(1) = 1 through a(5) = 15 factorizations:
() (2) (6) (24) (120)
(2*3) (3*8) (2*60)
(4*6) (3*40)
(2*12) (4*30)
(2*3*4) (5*24)
(6*20)
(8*15)
(10*12)
(3*5*8)
(4*5*6)
(2*3*20)
(2*4*15)
(2*5*12)
(3*4*10)
(2*3*4*5)
For example, 10*12 = (2*5)*(3*4), so (10*12) is counted under a(5).
Cf.
A001055,
A066723,
A157612,
A242422,
A265947,
A317141,
A317144,
A317145,
A317534,
A321468,
A321470,
A321471,
A321472,
A321514.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
Table[Length[Union[Sort/@Apply[Times,sps[Range[2,n]],{2}]]],{n,10}]
A321514
Number of ways to choose a factorization of each integer from 2 to n into factors > 1.
Original entry on oeis.org
1, 1, 1, 2, 2, 4, 4, 12, 24, 48, 48, 192, 192, 384, 768, 3840, 3840, 15360, 15360, 61440, 122880, 245760, 245760, 1720320, 3440640, 6881280, 20643840, 82575360, 82575360, 412876800, 412876800, 2890137600, 5780275200, 11560550400, 23121100800, 208089907200
Offset: 1
The a(8) = 12 ways to choose a factorization of each integer from 2 to 8:
(2)*(3)*(4)*(5)*(6)*(7)*(8)
(2)*(3)*(4)*(5)*(6)*(7)*(2*4)
(2)*(3)*(4)*(5)*(2*3)*(7)*(8)
(2)*(3)*(2*2)*(5)*(6)*(7)*(8)
(2)*(3)*(4)*(5)*(6)*(7)*(2*2*2)
(2)*(3)*(4)*(5)*(2*3)*(7)*(2*4)
(2)*(3)*(2*2)*(5)*(6)*(7)*(2*4)
(2)*(3)*(2*2)*(5)*(2*3)*(7)*(8)
(2)*(3)*(4)*(5)*(2*3)*(7)*(2*2*2)
(2)*(3)*(2*2)*(5)*(6)*(7)*(2*2*2)
(2)*(3)*(2*2)*(5)*(2*3)*(7)*(2*4)
(2)*(3)*(2*2)*(5)*(2*3)*(7)*(2*2*2)
Cf.
A001055,
A050336,
A066723,
A076716,
A157612,
A281113,
A300383,
A317144,
A317145,
A321467,
A321470,
A321471,
A321472.
-
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
Table[Array[Length[facs[#]]&,n,1,Times],{n,30}]
A322077
In the ranked poset of integer partitions ordered by refinement, number of integer partitions coarser (greater) than or equal to the integer partition whose multiplicities are the prime indices of n in weakly decreasing order.
Original entry on oeis.org
1, 1, 2, 2, 3, 4, 5, 5, 8, 6, 7, 9, 11, 10, 12, 13, 15, 18, 22, 15, 19, 14, 30, 24, 22, 21, 40, 23, 42, 29, 56, 36, 27, 29, 34, 47, 77, 41, 39, 40
Offset: 1
The list of a(1) = 1 through a(18) = 18 coarser partitions:
() (1) (2) (3) (3) (4) (4) (6) (6) (5) (5)
(11) (21) (21) (22) (22) (33) (33) (32) (32)
(111) (31) (31) (42) (42) (41) (41)
(211) (211) (51) (51) (221) (221)
(1111) (321) (222) (311) (311)
(321) (2111) (2111)
(411) (11111)
(2211)
.
(7) (6) (6) (7) (10) (7) (9)
(43) (33) (33) (43) (55) (43) (54)
(52) (42) (42) (52) (64) (52) (63)
(61) (51) (51) (61) (73) (61) (72)
(322) (222) (222) (322) (82) (322) (81)
(331) (321) (321) (331) (91) (331) (333)
(421) (411) (411) (421) (433) (421) (432)
(511) (2211) (2211) (511) (442) (511) (441)
(3211) (3111) (3111) (2221) (532) (2221) (522)
(21111) (21111) (3211) (541) (3211) (531)
(111111) (4111) (631) (4111) (621)
(22111) (721) (22111) (711)
(4321) (31111) (3222)
(211111) (3321)
(1111111) (4221)
(4311)
(5211)
(32211)
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Table[Length[Union[Sort/@Apply[Plus,mps[nrmptn[n]],{2}]]],{n,20}]
Showing 1-7 of 7 results.
Comments