A317558 Number of decimal digits to which the n-th convergent of the continued fraction expansion of log(2) matches the correct value.
0, -1, 1, 0, 2, 4, 5, 4, 5, 6, 6, 6, 7, 8, 9, 10, 11, 10, 12, 13, 13, 13, 14, 15, 15, 16, 17, 18, 20, 22, 22, 23, 23, 24, 25, 26, 27, 27, 28, 29, 31, 32, 33, 34, 35, 36, 38, 40, 39, 41, 39, 43, 44, 45, 46, 48, 48, 49, 51, 52, 52, 54, 54, 55, 55, 56, 57, 57, 58
Offset: 1
Examples
n convergent decimal expansion a(n) == ============ ==================== ==== 1 0 / 1 0.0 0 2 1 / 1 1.0 -1 3 2 / 3 0.66... 1 4 7 / 10 0.7... 0 5 9 / 13 0.692... 2 6 61 / 88 0.69318... 4 7 192 / 277 0.693140... 5 8 253 / 365 0.69315... 4 9 445 / 642 0.693146... 5 10 1143 / 1649 0.6931473... 6 oo lim = log(2) 0.693147180559945... --
Links
- A.H.M. Smeets, Table of n, a(n) for n = 1..20000
Programs
-
Mathematica
a[n_] := Block[{k = 1, a = RealDigits[Log@2, 10, n + 10][[1]], b = RealDigits[ FromContinuedFraction@ ContinuedFraction[ Log@2, n], 10, n + 10][[1]]}, While[a[[k]] == b[[k]], k++]; k - 1]; a[1] = 0; a[2] = -1; Array[a, 69] (* Robert G. Wilson v, Aug 09 2018 *)
Extensions
a(61) onward from Robert G. Wilson v, Aug 09 2018
Comments