A317557 Number of binary digits to which the n-th convergent of the continued fraction expansion of log(2) matches the correct value.
0, -1, 3, 6, 9, 13, 14, 17, 19, 20, 23, 20, 25, 20, 33, 37, 35, 38, 41, 43, 45, 43, 47, 48, 52, 54, 58, 61, 68, 70, 74, 77, 78, 81, 86, 89, 92, 93, 92, 99, 105, 109, 113, 116, 118, 121, 127, 133, 136, 135, 139, 141, 145, 149, 154, 159, 161, 165, 171, 173, 172, 180
Offset: 1
Examples
n convergent binary expansion a(n) == ============ ============================= ==== 1 0 / 1 0.0 0 2 1 / 1 1.0 -1 3 2 / 3 0.1010... 3 4 7 / 10 0.1011001... 6 5 9 / 13 0.1011000100... 9 6 61 / 88 0.10110001011101... 13 7 192 / 277 0.101100010111000... 14 8 253 / 365 0.101100010111001001... 17 9 445 / 642 0.10110001011100100000... 19 10 1143 / 1649 0.101100010111001000011... 20 oo lim = log(2) 0.101100010111001000010111... --
Links
- A.H.M. Smeets, Table of n, a(n) for n = 1..20000
Programs
-
Mathematica
a[n_] := Block[{k = 1, a = RealDigits[ Log@2, 2, 4 + 10][[1]], b = RealDigits[ FromContinuedFraction@ ContinuedFraction[Log@2, n + 1], 2, 4n + 10][[1]]}, While[ a[[k]] == b[[k]], k++]; k - 1]; a[1] = 0; a[2] = -1; Array[a, 61] (* Robert G. Wilson v, Aug 09 2018 *)
Extensions
a(40) onward from Robert G. Wilson v, Aug 09 2018
Comments