A317640 The 7x+-1 function: a(n) = 7n+1 if n == +1 (mod 4), a(n) = 7n-1 if n == -1 (mod 4), otherwise a(n) = n/2.
0, 8, 1, 20, 2, 36, 3, 48, 4, 64, 5, 76, 6, 92, 7, 104, 8, 120, 9, 132, 10, 148, 11, 160, 12, 176, 13, 188, 14, 204, 15, 216, 16, 232, 17, 244, 18, 260, 19, 272, 20, 288, 21, 300, 22, 316, 23, 328, 24, 344, 25, 356, 26, 372, 27, 384, 28, 400, 29, 412, 30, 428, 31, 440, 32, 456, 33
Offset: 0
Examples
a(3)=20 because 3 == -1 (mod 4), and thus 7*3 - 1 results in 20. a(5)=36 because 5 == +1 (mod 4), and thus 7*5 + 1 results in 36.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- D. Barina, 7x+-1: Close Relative of Collatz Problem, arXiv:1807.00908 [math.NT], 2018.
- K. Matthews, David Barina's 7x+1 conjecture.
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,1,0,-1).
Crossrefs
Cf. A006370.
Programs
-
C
int a(int n) { switch(n%4) { case 1: return 7*n+1; case 3: return 7*n-1; default: return n/2; } }
-
Mathematica
Array[Which[#2 == 1, 7 #1 + 1, #2 == 3, 7 #1 - 1, True, #1/2] & @@ {#, Mod[#, 4]} &, 67, 0] (* Michael De Vlieger, Aug 02 2018 *)
-
PARI
a(n)={my(m=(n+2)%4-2); if(m%2, 7*n + m, n/2)} \\ Andrew Howroyd, Aug 02 2018
-
PARI
concat(0, Vec(x*(8 + x + 12*x^2 + x^3 + 8*x^4) / ((1 - x)^2*(1 + x)^2*(1 + x^2)) + O(x^70))) \\ Colin Barker, Aug 03 2018
Formula
a(n) = a(a(2*n)).
From Colin Barker, Aug 03 2018: (Start)
G.f.: x*(8 + x + 12*x^2 + x^3 + 8*x^4) / ((1 - x)^2*(1 + x)^2*(1 + x^2)).
a(n) = a(n-2) + a(n-4) - a(n-6) for n>5.
(End)
Comments