A317642 Expansion of theta_3(q^2)*theta_3(q^5), where theta_3() is the Jacobi theta function.
1, 0, 2, 0, 0, 2, 0, 4, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 2, 0, 2, 0, 4, 4, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 2, 0, 4, 0, 0, 2, 0, 4, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 0, 8, 0, 0, 2, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 4, 0, 0, 6
Offset: 0
Keywords
Examples
G.f. = 1 + 2*q^2 + 2*q^5 + 4*q^7 + 2*q^8 + 4*q^13 + 2*q^18 + 2*q^20 + 4*q^22 + ...
Links
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
- Eric Weisstein's World of Mathematics, Jacobi Theta Functions
Programs
-
Mathematica
nmax = 98; CoefficientList[Series[EllipticTheta[3, 0, q^2] EllipticTheta[3, 0, q^5], {q, 0, nmax}], q] nmax = 98; CoefficientList[Series[QPochhammer[-q^2, -q^2] QPochhammer[-q^5, -q^5]/(QPochhammer[q^2, -q^2] QPochhammer[q^5, -q^5]), {q, 0, nmax}], q]
Formula
G.f.: Product_{k>=1} (1 + x^(4*k-2))^2*(1 - x^(4*k))*(1 + x^(10*k-5))^2*(1 - x^(10*k)).
Comments