A317648 a(1) = a(2) = 1; for n >= 3, a(n) = a(t(n)) + a(n-t(n)) where t = A004001.
1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 7, 7, 8, 8, 9, 9, 10, 11, 12, 12, 12, 12, 13, 14, 15, 15, 15, 15, 16, 16, 17, 17, 18, 19, 20, 21, 21, 21, 21, 21, 22, 23, 24, 25, 26, 27, 27, 27, 27, 27, 27, 27, 28, 29, 30, 31, 31, 31, 31, 31, 32, 32, 33, 33, 34, 35, 36, 37, 38, 38, 38, 38, 38, 38, 39, 40, 41, 42, 43, 44, 45
Offset: 1
Links
- Altug Alkan, Table of n, a(n) for n = 1..65536
- Altug Alkan, Line plot of a(n)-n/2 for n <= 2^17
- Altug Alkan, Line plots of A004001(n)-n/2 and a(n)-n/2 for n <= 2^14
- Altug Alkan, Line plots of a(n)-n/2 and b(n)-n/2 for n <= 2^11
Programs
-
Maple
b:= proc(n) option remember; `if`(n<3, 1, b(b(n-1)) +b(n-b(n-1))) end: a:= proc(n) option remember; `if`(n<3, 1, a(b(n)) +a(n-b(n))) end: seq(a(n), n=1..100); # after Alois P. Heinz at A317686
-
Mathematica
t[1] = 1; t[2] = 1; t[n_] := t[n] = t[t[n-1]] + t[n - t[n-1]]; a[1] = a[2] = 1; a[n_] := a[n] = a[t[n]] + a[n - t[n]]; Array[a, 100] (* Jean-François Alcover, Nov 01 2020 *)
-
PARI
t=vector(99); t[1]=t[2]=1; for(n=3, #t, t[n] = t[t[n-1]]+t[n-t[n-1]]); a=vector(99); a[1]=a[2]=1; for(n=3, #a, a[n] = a[t[n]]+a[n-t[n]]); a
Formula
a(n+1) - a(n) = 0 or 1 for all n >= 1.
Comments