cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317660 Denominator of the coefficient of z^(-n) of asymptotic expansions related to hyperfactorial function H(z).

Original entry on oeis.org

1, 1, 1, 720, 1, 5040, 1036800, 10080, 3628800, 24634368000, 6350400, 747242496000, 3476402012160000, 105670656000, 11298306539520000, 1489290622009344000000, 2259661307904000, 6688268793387417600000, 920024174652492349440000000, 8655406673795481600000
Offset: 0

Views

Author

Seiichi Manyama, Sep 01 2018

Keywords

Comments

1^1*2^2*...*n^n ~ A*n^(n^2/2 + n/2 + 1/12)*exp(-n^2/4)*(Sum_{k>=0} b(k)/n^k)^n, where A is the Glaisher-Kinkelin constant.
a(n) is the denominator of b(n).

Examples

			1^1*2^2*...*n^n ~ A*n^(n^2/2 + n/2 + 1/12)*exp(-n^2/4)*(1 + 1/(720*n^3) - 1/(5040*n^5) + 1/(1036800*n^6) + 1/(10080*n^7) - 1/(3628800*n^8) - 2591989/(24634368000*n^9) + ... )^n.
		

Crossrefs

Formula

Let B_n be the Bernoulli number, and define the sequence {c_n} by the recurrence
c_0 = 1, c_n = (-1/n) * Sum_{k=0..n-2} B_{n-k+1}*c_k/((n-k-1)*(n-k+1)) for n > 0.
a(n) is the denominator of c_n.