cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A317674 Regular triangle where T(n,k) is the number of antichains covering n vertices with k connected components.

Original entry on oeis.org

1, 1, 1, 5, 3, 1, 84, 23, 6, 1, 6348, 470, 65, 10, 1, 7743728, 39598, 1575, 145, 15, 1, 2414572893530, 54354104, 144403, 4095, 280, 21, 1, 56130437190053299918162, 19316801997024, 218033088, 402073, 9100, 490, 28, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2018

Keywords

Examples

			Triangle begins:
        1
        1       1
        5       3       1
       84      23       6       1
     6348     470      65      10       1
  7743728   39598    1575     145      15       1
		

Crossrefs

Programs

  • Mathematica
    blg={1,1,5,84,6348,7743728,2414572893530,56130437190053299918162} (*A048143*);
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Sum[Product[blg[[Length[s]]],{s,spn}],{spn,Select[sps[Range[n]],Length[#]==k&]}],{n,Length[blg]},{k,n}]

A318697 Number of ways to partition a hypertree spanning n vertices into hypertrees.

Original entry on oeis.org

1, 1, 7, 93, 1856, 49753, 1679441, 68463769, 3273695758, 179710285011, 11141016392749, 769939840667473, 58695964339179805, 4893452980658819151, 442915168219228586581, 43255083632741702266097, 4533695508041747494704359, 507638249638364368312476913
Offset: 1

Views

Author

Gus Wiseman, Aug 31 2018

Keywords

Examples

			The a(3) = 7 hypertree partitions:
  {{{1,2,3}}}
  {{{1,2},{1,3}}}
  {{{1,2},{2,3}}}
  {{{1,3},{2,3}}}
  {{{1,2}},{{1,3}}}
  {{{1,2}},{{2,3}}}
  {{{1,3}},{{2,3}}}
		

Crossrefs

Programs

  • Mathematica
    trct[n_]:=Sum[StirlingS2[n-1,i]*n^(i-1),{i,0,n-1}];
    numSetPtnsOfType[ptn_]:=Total[ptn]!/Times@@Factorial/@ptn/Times@@Factorial/@Length/@Split[ptn];
    Table[Sum[n^(Length[ptn]-1)*Product[trct[s+1],{s,ptn}]*numSetPtnsOfType[ptn],{ptn,IntegerPartitions[n-1]}],{n,20}]

A317671 Regular triangle where T(n,k) is the number of labeled connected graphs on n + 1 vertices with k maximal blobs (2-connected components).

Original entry on oeis.org

1, 1, 3, 10, 12, 16, 238, 215, 150, 125, 11368, 7740, 4140, 2160, 1296, 1014888, 509446, 205065, 84035, 36015, 16807, 166537616, 59409952, 17393152, 5393920, 1863680, 688128, 262144, 50680432112, 12321597708, 2516756508, 563570217, 148803480, 45467730
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2018

Keywords

Examples

			Triangle begins:
        1
        1       3
       10      12      16
      238     215     150     125
    11368    7740    4140    2160    1296
  1014888  509446  205065   84035   36015   16807
		

Crossrefs

Row sums are A001187. First column is A013922. Last column is A000272.

Programs

  • Mathematica
    blg={0,1,1,10,238,11368,1014888,166537616,50680432112,29107809374336} (*A013922*);
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Sum[n^(k-1)*Product[blg[[Length[s]+1]],{s,spn}],{spn,Select[sps[Range[n-1]],Length[#]==k&]}],{n,Length[blg]},{k,n-1}]

A317676 Triangle whose n-th row lists in order all e-numbers of free pure symmetric multifunctions (with empty expressions allowed) with one atom and n positions.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 16, 7, 10, 12, 13, 21, 25, 27, 32, 36, 64, 81, 128, 256, 11, 14, 17, 18, 28, 33, 35, 41, 45, 49, 75, 93, 100, 125, 144, 145, 169, 216, 243, 279, 441, 512, 625, 729, 1024, 1296, 2048, 2187, 4096, 6561, 8192, 16384, 65536, 524288, 8388608, 9007199254740992
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2018

Keywords

Comments

Given a positive integer n we construct a unique free pure symmetric multifunction e(n) by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)].
Every free pure symmetric multifunction (with empty expressions allowed) f with one atom and n positions has a unique e-number n such that e(n) = f, and vice versa, so this sequence is a permutation of the positive integers.

Examples

			Triangle begins:
  1
  2
  3   4
  5   6   8   9  16
  7  10  12  13  21  25  27  32  36  64  81 128 256
Corresponding triangle of free pure symmetric multifunctions (with empty expressions allowed) begins:
  o,
  o[],
  o[][], o[o],
  o[][][], o[o][], o[o[]], o[][o], o[o,o].
		

Crossrefs

Programs

  • Mathematica
    maxUsing[n_]:=If[n==1,{"o"},Join@@Cases[Table[PR[k,n-k-1],{k,n-1}],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{maxUsing[h],Union[Sort/@Tuples[maxUsing/@p]]}],{p,IntegerPartitions[g]}]]];
    radQ[n_]:=And[n>1,GCD@@FactorInteger[n][[All,2]]==1];
    Clear[rad];rad[n_]:=rad[n]=If[n==0,1,NestWhile[#+1&,rad[n-1]+1,Not[radQ[#]]&]];
    ungo[x_?AtomQ]:=1;ungo[h_[g___]]:=rad[ungo[h]]^(Times@@Prime/@ungo/@{g});
    Table[Sort[ungo/@maxUsing[n]],{n,5}]
Showing 1-4 of 4 results.