cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317686 a(1) = a(2) = 1; for n >= 3, a(n) = a(t(n)) + a(n-t(n)) where t = A063882.

Original entry on oeis.org

1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 8, 9, 10, 11, 12, 12, 12, 13, 14, 15, 15, 16, 16, 17, 18, 19, 20, 20, 21, 21, 22, 22, 23, 24, 25, 26, 27, 27, 27, 27, 28, 29, 29, 30, 31, 32, 33, 33, 34, 35, 36, 36, 36, 37, 38, 38, 39, 40, 41, 41, 42, 42, 43, 44, 45, 46, 46, 47, 48, 49, 49, 49, 49, 50, 51
Offset: 1

Views

Author

Altug Alkan, Aug 04 2018

Keywords

Comments

This sequence hits every positive integer and it has a fractal-like structure, see scatterplot of 2*n-3*a(n) in Links section.
Let b(1) = b(2) = b(3) = b(4) = 1; for n >= 5, b(n) = b(t(n)) + b(n-t(n)) where t = A063882. Observe the symmetric relation between this sequence (a(n)) and b(n) thanks to plots of a(n)-2*n/3 and b(n)-n/3 in Links section. Note that a(n) + b(n) = n for n >= 2.

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<5, 1,
          b(n-b(n-1)) +b(n-b(n-4)))
        end:
    a:= proc(n) option remember; `if`(n<3, 1,
          a(b(n)) +a(n-b(n)))
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 05 2018
  • Mathematica
    b[n_] := b[n] = If[n < 5, 1, b[n - b[n - 1]] + b[n - b[n - 4]]];
    a[n_] := a[n] = If[n < 3, 1, a[b[n]] + a[n - b[n]]];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Mar 02 2022, after Alois P. Heinz *)
  • PARI
    t=vector(99); t[1]=t[2]=t[3]=t[4]=1; for(n=5, #t, t[n] = t[n-t[n-1]]+t[n-t[n-4]]); a=vector(99); a[1]=a[2]=1; for(n=3, #a, a[n] = a[t[n]]+a[n-t[n]]); a

Formula

a(n+1) - a(n) = 0 or 1 for all n >= 1.