A317705 Matula-Goebel numbers of series-reduced powerful rooted trees.
1, 4, 8, 16, 32, 49, 64, 128, 196, 256, 343, 361, 392, 512, 784, 1024, 1372, 1444, 1568, 2048, 2401, 2744, 2809, 2888, 3136, 4096, 5488, 5776, 6272, 6859, 8192, 9604, 10976, 11236, 11552, 12544, 16384, 16807, 17161, 17689, 19208, 21952, 22472, 23104, 25088
Offset: 1
Keywords
Examples
The sequence of Matula-Goebel numbers of series-reduced powerful rooted trees together with the corresponding trees begins: 1: o 4: (oo) 8: (ooo) 16: (oooo) 32: (ooooo) 49: ((oo)(oo)) 64: (oooooo) 128: (ooooooo) 196: (oo(oo)(oo)) 256: (oooooooo) 343: ((oo)(oo)(oo)) 361: ((ooo)(ooo)) 392: (ooo(oo)(oo)) 512: (ooooooooo) 784: (oooo(oo)(oo))
Crossrefs
Programs
-
Mathematica
powgoQ[n_]:=Or[n==1,And[Min@@FactorInteger[n][[All,2]]>1,And@@powgoQ/@PrimePi/@FactorInteger[n][[All,1]]]]; Select[Range[1000],powgoQ] (* Gus Wiseman, Aug 31 2018 *) (* Second program: *) Nest[Function[a, Append[a, Block[{k = a[[-1]] + 1}, While[Nand[AllTrue[#[[All, -1]], # > 1 & ], AllTrue[PrimePi[#[[All, 1]] ], MemberQ[a, #] &]] &@ FactorInteger@ k, k++]; k]]], {1}, 44] (* Michael De Vlieger, Aug 05 2018 *)
Extensions
Rewritten by Gus Wiseman, Aug 31 2018
Comments