A317709 Aperiodic relatively prime tree numbers. Matula-Goebel numbers of aperiodic relatively prime trees.
1, 2, 3, 5, 6, 10, 11, 12, 13, 15, 18, 20, 22, 24, 26, 29, 30, 31, 33, 37, 40, 41, 44, 45, 47, 48, 50, 52, 54, 55, 58, 60, 61, 62, 66, 71, 72, 74, 75, 78, 79, 80, 82, 88, 89, 90, 93, 94, 96, 99, 101, 104, 108, 109, 110, 113, 116, 120, 122, 123, 124, 127, 130
Offset: 1
Keywords
Examples
The sequence of aperiodic relatively prime tree numbers together with their Matula-Goebel trees begins: 1: o 2: (o) 3: ((o)) 5: (((o))) 6: (o(o)) 10: (o((o))) 11: ((((o)))) 12: (oo(o)) 13: ((o(o))) 15: ((o)((o))) 18: (o(o)(o)) 20: (oo((o))) 22: (o(((o)))) 24: (ooo(o)) 26: (o(o(o))) 29: ((o((o)))) 30: (o(o)((o))) 31: (((((o)))))
Crossrefs
Programs
-
Mathematica
rupQ[n_]:=Or[n==1,If[PrimeQ[n],rupQ[PrimePi[n]],And[GCD@@FactorInteger[n][[All,2]]==1,GCD@@PrimePi/@FactorInteger[n][[All,1]]==1,And@@rupQ/@PrimePi/@FactorInteger[n][[All,1]]]]]; Select[Range[100],rupQ]
Comments