A317722 Number of connected graphs with n nodes and no node a member of more than one cycle.
1, 1, 2, 3, 8, 18, 56, 165, 563, 1937, 7086, 26396, 101383, 395821, 1573317, 6335511, 25825861, 106344587, 441919711, 1851114466, 7809848543, 33162241547, 141636863809, 608144007472, 2623832050460, 11370768445682, 49478287669666, 216109924932762, 947216963083175
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
- R. J. Mathar, Counting connected graphs without overlapping cycles, arXiv:1808.06264 [math.CO] (2018), series c(n).
- R. J. Mathar, Illustration of the graphs up to n=6
Programs
-
PARI
EulerMTS(p)={my(n=serprec(p,x)-1,vars=variables(p)); exp(sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i))} raise(p,d) = {my(n=serprec(p,x)-1); substvec(p + O(x^(n\d+1)), [x, y], [x^d,y^d])} R(n,y)={my(g=x+O(x^2)); for(n=2, n, my(p=x*EulerMTS(g), p2=raise(p,2)); g=p + p*y*(p/(1 - p) + (p + p2)/(1 - p2))/2); g} G(n,y=1)={my(g=R(n,y), p = x*EulerMTS(g) + O(x*x^n)); my( r=((1 + p)^2/(1 - raise(p,2)) - 1)/2 ); my( c=-sum(d=1, n, eulerphi(d)/d*log(raise(1-p,d))) ); 1 + p + (raise(g,2) - g^2 + y*(r + c - 2*p))/2 } { Vec(G(30)) } \\ Andrew Howroyd, Feb 25 2025
Formula
a(n) >= A036250(n).
Extensions
a(5) corrected. - R. J. Mathar, Aug 12 2018
Comments