cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317742 Let b(1) = b(2) = 1; for n >= 3, b(n) = b(t(n)) + b(n-t(n)) where t = A287422. a(n) = 2*b(n) - n.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 0, 1, 0, 1, 0, 1, 2, 3, 4, 3, 2, 1, 2, 3, 2, 3, 4, 5, 6, 5, 4, 3, 2, 3, 2, 1, 2, 3, 4, 3, 2, 1, 0, 1, 0, 1, 0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 10, 9, 8, 7, 6, 5, 4, 3, 4, 5, 6, 5, 4, 3, 4, 5, 6, 7, 8, 9, 10
Offset: 1

Views

Author

Altug Alkan, Aug 05 2018

Keywords

Comments

This sequence has fractal-like structure as A004074, although there are substantial differences of this sequence based on slow A287422 and b(n) sequences. See plots of this sequence and A004074 in Links section.

Crossrefs

Programs

  • Maple
    t:= proc(n) option remember; `if`(n<3, 1,
          n -t(t(n-1)) -t(n-t(n-1)))
        end:
    b:= proc(n) option remember; `if`(n<3, 1,
          b(t(n)) +b(n-t(n)))
        end:
    seq(2*b(n)-n, n=1..100); # after Alois P. Heinz at A317686
  • Mathematica
    Block[{t = NestWhile[Function[{a, n}, Append[a, n - a[[a[[-1]] ]] - a[[-a[[-1]] ]] ] ] @@ {#, Length@ # + 1} &, {1, 1}, Last@ # < 10^2 &], b}, b = NestWhile[Function[{b, n}, Append[b, b[[t[[n]] ]] + b[[-t[[n]] ]] ] ] @@ {#, Length@ # + 1} &, {1, 1}, Last@ # < Max@ t &]; Array[2 b[[#]] - # &, Length@ b] ] (* Michael De Vlieger, Aug 07 2018 *)
    t[n_] := t[n] = If[n<3, 1, n - t[t[n-1]] - t[n - t[n-1]]]; b[n_] := b[n] = If[n<3, 1, b[t[n]] + b[n - t[n]]]; Table[2*b[n] - n, {n, 106}] (* Giovanni Resta, Aug 14 2018 *)
  • PARI
    t=vector(199); t[1]=t[2]=1; for(n=3, #t, t[n] = n-t[n-t[n-1]]-t[t[n-1]]); b=vector(199); b[1]=b[2]=1; for(n=3, #b, b[n] = b[t[n]]+b[n-t[n]]); vector(199, k, 2*b[k]-k)