A317745 Square array T(n,k) (n >= 1, k >= 1) read by antidiagonals: first row and column are A085090, other entries equal sum of entries in first row and first column.
0, 3, 3, 5, 6, 5, 7, 8, 8, 7, 0, 10, 10, 10, 0, 11, 3, 12, 12, 3, 11, 13, 14, 5, 14, 5, 14, 13, 0, 16, 16, 7, 7, 16, 16, 0, 17, 3, 18, 18, 0, 18, 18, 3, 17, 19, 20, 5, 20, 11, 11, 20, 5, 20, 19, 0, 22, 22, 7, 13, 22, 13, 7, 22, 22, 0, 23, 3, 24, 24, 0, 24, 24, 0, 24, 24, 3, 23
Offset: 1
Examples
Beginning of the array. All elements are equal to topmost value plus leftmost value. 0 3 5 7 0 11 13 0 17 19 0 23 3 6 8 10 3 14 16 3 20 22 3 5 8 10 12 5 16 18 5 22 24 7 10 12 14 7 18 20 7 24 0 3 5 7 0 11 13 0 11 14 16 18 11 22 24 13 16 18 20 13 24 0 3 5 7 0 17 20 22 24 19 22 24 0 3 23
Links
- Gustavo Funes, Damian Gulich, Leopoldo Garavaglia and Mario Garavaglia, Hidden Symmetries Among Primes, Form and Symmetry: Art and Science, Buenos Aires Congress, 2007, Section 4, Figure 10.
- Fred Daniel Kline, Goldbach Illustrated
Crossrefs
Cf. A085090.
Programs
-
Mathematica
i[n_] := If[PrimeQ[2 n - 1], 2 n - 1, 0]; A085090 = Array[i, 82]; r[k_] := Table[A085090[[j]] + A085090[[k - j + 1]], {j, 1, k}]; a = Array[r, 12] // Flatten,
-
PARI
a085090(n) = if (isprime(p=2*n-1), p, 0); row(n) = vector(n, k, a085090(k) + a085090(n-k+1)); tabl(nn) = for (n=1, nn, print(row(n))); \\ Michel Marcus, Aug 09 2018
Extensions
Edited by N. J. A. Sloane, Sep 09 2018
Comments