A317747 Numerator of the coefficient of z^(-n) in the Stirling-like asymptotic expansion of Product_{z=1..n} z^(z^2).
1, -1, 1, 259193, -1036793, -201551328007, 9137074752049, 9142431862033871923, -11105299580705049589, -11003865617473929216508154207, 114467620015003245418244743007, 32505236416490926096399421788847363, -254505521478572052318535393350091231, -1828472168539763642032546635313363411876021
Offset: 0
Examples
1^(1^2)*2^(2^2)*...*n^(n^2) ~ A_2*n^(n^3/3+n^2/2+n/6)*exp(-n^3/9+n/12)*(1 - 1/(360*n) + 1/(259200*n^2) + 259193/(1959552000*n^3) - 1036793/(2821754880000*n^4) - 201551328007/(5079158784000000*n^5) + ... ).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..174
- Weiping Wang, Some asymptotic expansions on hyperfactorial functions and generalized Glaisher-Kinkelin constants, ResearchGate, 2017.
Crossrefs
Formula
Let B_n be the Bernoulli number, and define the sequence {c_n} by the recurrence
c_0 = 1, c_n = (2/n) * Sum_{k=0..n-1} B_{n-k+3}*c_k/((n-j+1)*(n-k+2)*(n-k+3)) for n > 0.
a(n) is the numerator of c_n.
Comments