A317752 Number of multiset partitions of normal multisets of size n such that the blocks have empty intersection.
0, 1, 8, 49, 305, 1984, 13686, 100124, 776885, 6386677, 55532358, 509549386, 4921352952, 49899820572, 529807799836, 5876162077537, 67928460444139, 816764249684450, 10195486840926032, 131896905499007474, 1765587483656124106, 24419774819813602870
Offset: 1
Keywords
Examples
The a(3) = 8 multiset partitions with empty intersection: {{2},{1,1}} {{1},{2,2}} {{1},{2,3}} {{2},{1,3}} {{3},{1,2}} {{1},{1},{2}} {{1},{2},{2}} {{1},{2},{3}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..100
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; allnorm[n_]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]; Table[Length[Join@@Table[Select[mps[m],Intersection@@#=={}&],{m,allnorm[n]}]],{n,6}]
-
PARI
P(n,k)={1/prod(i=1, n, (1 - x^i*y + O(x*x^n))^binomial(k+i-1, k-1))} R(n,k)={my(p=P(n,k), q=p/(1-y+O(y*y^n))); Vec(sum(i=2, n, polcoef(p,i,y) + polcoef(q,i,y)*sum(j=1, n\i, (-1)^j*binomial(k,j)*x^(i*j))), -n)} seq(n)={sum(k=2, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) )} \\ Andrew Howroyd, Feb 05 2021
Extensions
Terms a(9) and beyond from Andrew Howroyd, Feb 05 2021
Comments