A317778 Starting with 1,2,3,4,5,6: a(n) is the next smallest number greater than a(n-1) such that a[i] + a[j] + a[k] != a[x] + a[y] + a[z] for 1 <= i,j,k,x,y,z <= n all distinct.
1, 2, 3, 4, 5, 6, 13, 22, 39, 72, 131, 229, 386, 641, 896, 1164, 1419, 1855, 2831, 3545, 5036, 5750, 8034, 10022, 12227, 14377, 17455, 19951, 24701, 27197, 36455, 42303, 49751, 57232, 65684, 83879, 94391, 110073, 124015, 137442, 156835, 175130, 209215, 229396, 242692
Offset: 1
Keywords
Examples
After 1,2,3,4,5,6: 7 cannot be the next term because 1+3+7 = 2+4+5.
Links
- Charlie Neder, Table of n, a(n) for n = 1..70
Crossrefs
Cf. A011185.
Programs
-
Python
def u(series): for i in range(0, len(series)): for j in range(i+1, len(series)): for k in range(j+1, len(series)): for l in range(0, len(series)): for m in range(l+1, len(series)): for n in range(m+1, len(series)): if len(set([i,j,k,l,m,n]))==6: if series[i]+series[j]+series[k]==series[l]+series[m]+series[n]: return False return True def a(series, n): a = [] for i in range(0, len(series)): a.append(series[i]) a.append(n) return a series = [1, 2, 3,4,5,6] for i in range(7, 1000): print(i) nseries = a(series, i) if u(nseries): series.append(i) print(series) print(series)
Extensions
a(24)-a(45) from Charlie Neder, Feb 09 2019
Comments