A317786 Matula-Goebel numbers of locally connected rooted trees.
1, 2, 3, 5, 9, 11, 23, 25, 27, 31, 81, 83, 97, 103, 115, 121, 125, 127, 243, 419, 431, 509, 515, 529, 563, 575, 625, 631, 661, 691, 709, 729, 961, 1067, 1331, 1543, 2095, 2187, 2369, 2575, 2645, 2875, 2897, 3001, 3125, 3637, 3691, 3803, 4091, 4201, 4637, 4663
Offset: 1
Keywords
Examples
The sequence of locally connected trees together with their Matula-Goebel numbers begins: 1: o 2: (o) 3: ((o)) 5: (((o))) 9: ((o)(o)) 11: ((((o)))) 23: (((o)(o))) 25: (((o))((o))) 27: ((o)(o)(o)) 31: (((((o))))) 81: ((o)(o)(o)(o)) 83: ((((o)(o)))) 97: ((((o))((o))))
Crossrefs
Programs
-
Mathematica
multijoin[mss__]:=Join@@Table[Table[x,{Max[Count[#,x]&/@{mss}]}],{x,Union[mss]}]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], multijoin@@s[[c[[1]]]]]]]]]; primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; rupQ[n_]:=Or[n==1,If[PrimeQ[n],rupQ[PrimePi[n]],And[Length[csm[primeMS/@primeMS[n]]]==1,And@@rupQ/@PrimePi/@FactorInteger[n][[All,1]]]]]; Select[Range[1000],rupQ[#]&]
Comments