cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317786 Matula-Goebel numbers of locally connected rooted trees.

Original entry on oeis.org

1, 2, 3, 5, 9, 11, 23, 25, 27, 31, 81, 83, 97, 103, 115, 121, 125, 127, 243, 419, 431, 509, 515, 529, 563, 575, 625, 631, 661, 691, 709, 729, 961, 1067, 1331, 1543, 2095, 2187, 2369, 2575, 2645, 2875, 2897, 3001, 3125, 3637, 3691, 3803, 4091, 4201, 4637, 4663
Offset: 1

Views

Author

Gus Wiseman, Aug 07 2018

Keywords

Comments

An unlabeled rooted tree is locally connected if the branches directly under any given node are connected as a hypergraph.

Examples

			The sequence of locally connected trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   5: (((o)))
   9: ((o)(o))
  11: ((((o))))
  23: (((o)(o)))
  25: (((o))((o)))
  27: ((o)(o)(o))
  31: (((((o)))))
  81: ((o)(o)(o)(o))
  83: ((((o)(o))))
  97: ((((o))((o))))
		

Crossrefs

Programs

  • Mathematica
    multijoin[mss__]:=Join@@Table[Table[x,{Max[Count[#,x]&/@{mss}]}],{x,Union[mss]}];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], multijoin@@s[[c[[1]]]]]]]]];
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    rupQ[n_]:=Or[n==1,If[PrimeQ[n],rupQ[PrimePi[n]],And[Length[csm[primeMS/@primeMS[n]]]==1,And@@rupQ/@PrimePi/@FactorInteger[n][[All,1]]]]];
    Select[Range[1000],rupQ[#]&]