A317797 Sum of the norm of divisors of n over Gaussian integers, with associated divisors counted only once.
1, 7, 10, 31, 36, 70, 50, 127, 91, 252, 122, 310, 196, 350, 360, 511, 324, 637, 362, 1116, 500, 854, 530, 1270, 961, 1372, 820, 1550, 900, 2520, 962, 2047, 1220, 2268, 1800, 2821, 1444, 2534, 1960, 4572, 1764, 3500, 1850, 3782, 3276, 3710, 2210, 5110, 2451, 6727
Offset: 1
Examples
Let ||d|| denote the norm of d. a(2) = ||1|| + ||1 + i|| + ||2|| = 1 + 2 + 4 = 7. a(5) = ||1|| + ||2 + i|| + ||2 - i|| + ||5|| = 1 + 5 + 5 + 25 = 36. Note that 2 - i and 1 + 2i are associated so their norm is only counted once.
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
- Wikipedia, Gaussian integer
Crossrefs
Cf. A001157.
Equivalent of arithmetic functions in the ring of Gaussian integers (the corresponding functions in the ring of integers are in the parentheses): A062327 ("d", A000005), this sequence ("sigma", A000203), A079458 ("phi", A000010), A227334 ("psi", A002322), A086275 ("omega", A001221), A078458 ("Omega", A001222), A318608 ("mu", A008683).
Equivalent in the ring of Eisenstein integers: A319449.
Programs
-
Mathematica
f[p_, e_] := If[p == 2, 2^(2*e + 1) - 1, Switch[Mod[p, 4], 1, ((p^(e + 1) - 1)/(p - 1))^2, 3, (p^(2 e + 2) - 1)/(p^2 - 1)]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 12 2020 *)
-
PARI
a(n)= { my(r=1, f=factor(n)); for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]); if(p==2, r*=(2^(2*e+1)-1)); if(Mod(p,4)==1, r*=((p^(e+1)-1)/(p-1))^2); if(Mod(p,4)==3, r*=(p^(2*e+2)-1)/(p^2-1)); ); return(r); }
Formula
Multiplicative with a(2^e) = sigma(2^(2e)) = 2^(2e+1) - 1, a(p^e) = sigma(p^e)^2 = ((p^(e+1) - 1)/(p - 1))^2 if p == 1 (mod 4) and sigma_2(p^e) = A001157(p^e) = (p^(2e+2) - 1)/(p^2 - 1) if p == 3 (mod 4).
Comments