cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317797 Sum of the norm of divisors of n over Gaussian integers, with associated divisors counted only once.

Original entry on oeis.org

1, 7, 10, 31, 36, 70, 50, 127, 91, 252, 122, 310, 196, 350, 360, 511, 324, 637, 362, 1116, 500, 854, 530, 1270, 961, 1372, 820, 1550, 900, 2520, 962, 2047, 1220, 2268, 1800, 2821, 1444, 2534, 1960, 4572, 1764, 3500, 1850, 3782, 3276, 3710, 2210, 5110, 2451, 6727
Offset: 1

Views

Author

Jianing Song, Aug 07 2018

Keywords

Comments

Equivalent of sigma (A000203) in the ring of Gaussian integers. Note that only norms are summed up.

Examples

			Let ||d|| denote the norm of d.
a(2) = ||1|| + ||1 + i|| + ||2|| = 1 + 2 + 4 = 7.
a(5) = ||1|| + ||2 + i|| + ||2 - i|| + ||5|| = 1 + 5 + 5 + 25 = 36. Note that 2 - i and 1 + 2i are associated so their norm is only counted once.
		

Crossrefs

Cf. A001157.
Equivalent of arithmetic functions in the ring of Gaussian integers (the corresponding functions in the ring of integers are in the parentheses): A062327 ("d", A000005), this sequence ("sigma", A000203), A079458 ("phi", A000010), A227334 ("psi", A002322), A086275 ("omega", A001221), A078458 ("Omega", A001222), A318608 ("mu", A008683).
Equivalent in the ring of Eisenstein integers: A319449.

Programs

  • Mathematica
    f[p_, e_] := If[p == 2, 2^(2*e + 1) - 1, Switch[Mod[p, 4], 1, ((p^(e + 1) - 1)/(p - 1))^2, 3, (p^(2 e + 2) - 1)/(p^2 - 1)]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 12 2020 *)
  • PARI
    a(n)=
    {
        my(r=1, f=factor(n));
        for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
            if(p==2, r*=(2^(2*e+1)-1));
            if(Mod(p,4)==1, r*=((p^(e+1)-1)/(p-1))^2);
            if(Mod(p,4)==3, r*=(p^(2*e+2)-1)/(p^2-1));
        );
        return(r);
    }

Formula

Multiplicative with a(2^e) = sigma(2^(2e)) = 2^(2e+1) - 1, a(p^e) = sigma(p^e)^2 = ((p^(e+1) - 1)/(p - 1))^2 if p == 1 (mod 4) and sigma_2(p^e) = A001157(p^e) = (p^(2e+2) - 1)/(p^2 - 1) if p == 3 (mod 4).