A317806 Number of set partitions of [k] into 4 blocks with equal element sum, where k is the n-th positive integer that allows such a partition.
1, 1, 871, 2650, 9462094, 31650271, 171019406993, 595828948333, 4107584704538352, 14702365152800667, 118513210888679225825, 432046935173440593804, 3881432331405193485285518, 14337098117309087488187476, 139477762791757859249400365738, 520312171172086830267314753894
Offset: 1
Keywords
Examples
a(1) = 1: 16|25|34|7 with k = 7. a(2) = 1: 18|27|36|45 with k = 8.
Links
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc() option remember; local i, j, t; `if`(args[1]=0, `if`(nargs=2, 1, b(args[t] $t=2..nargs)), add( `if`(args[j] -args[nargs]<0, 0, b(sort([seq(args[i]- `if`(i=j, args[nargs], 0), i=1..nargs-1)])[], args[nargs]-1)), j=1..nargs-1)) end: a:= proc(n) option remember; (k-> (m-> b((m/4)$4, k)/24)(k*(k+1)/2))(4*n+3/2*(1-(-1)^n)) end: seq(a(n), n=1..8);
Comments