A317846 Numerators of rational valued sequence whose Dirichlet convolution with itself yields sequence A051953 (cototient of n) + A063524 (1, 0, 0, 0, ...).
1, 1, 1, 7, 1, 7, 1, 25, 11, 11, 1, 43, 1, 15, 13, 363, 1, 71, 1, 67, 17, 23, 1, 139, 19, 27, 61, 91, 1, 57, 1, 1335, 25, 35, 21, 365, 1, 39, 29, 215, 1, 81, 1, 139, 131, 47, 1, 1875, 27, 199, 37, 163, 1, 367, 29, 291, 41, 59, 1, 235, 1, 63, 171, 9923, 33, 129, 1, 211, 49, 137, 1, 1055, 1, 75, 235, 235, 33, 153, 1, 2883, 1363, 83, 1, 335, 41
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
PARI
A317846aux(n) = if(1==n,n,((n-eulerphi(n))-sumdiv(n,d,if((d>1)&&(d
A317846aux(d)*A317846aux(n/d),0)))/2); A317846(n) = numerator(A317846aux(n)); -
PARI
\\ Memoized implementation: memo317846 = Map(); A317846aux(n) = if(1==n,n,if(mapisdefined(memo317846,n),mapget(memo317846,n),my(v = ((n-eulerphi(n))-sumdiv(n,d,if((d>1)&&(d
A317846aux(d)*A317846aux(n/d),0)))/2); mapput(memo317846,n,v); (v)));
Formula
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A051953(n) - Sum_{d|n, d>1, d 1.
Comments