A317872 a(n) is the number of times that binomial(n+m, m) mod m = 1, for 0 < m <= n.
0, 0, 0, 1, 1, 0, 0, 1, 3, 2, 2, 1, 1, 0, 0, 2, 2, 1, 1, 3, 2, 0, 0, 1, 2, 2, 4, 4, 4, 0, 0, 3, 4, 1, 1, 3, 3, 1, 0, 1, 1, 2, 2, 1, 2, 1, 1, 2, 4, 2, 2, 4, 4, 6, 4, 3, 2, 2, 2, 1, 1, 0, 1, 7, 6, 1, 1, 1, 1, 1, 1, 3, 3, 2, 2, 2, 2, 1, 1, 3, 7, 4, 4, 4, 4, 0, 1, 2, 2, 2, 2, 2, 1, 0, 0, 3, 3, 3, 4, 5, 5, 2, 2, 3, 1
Offset: 1
Keywords
Examples
a(9) = 3 because binomial(9+2,2) mod 2 = binomial(9+3,3) mod 3 = binomial(9+6,6) mod 6 = 1. [Corrected by _Jon E. Schoenfield_, Aug 28 2018]
Links
- Hieronymus Fischer, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A133906.
Programs
-
Mathematica
a[n_] := Block[{c = 0, m = 1}, While[m < n + 1, If[ Mod[ Binomial[n + m, m], m] == 1, c++]; m++]; c]; Array[a, 105] Table[Count[Table[Mod[Binomial[n+m,m],m],{m,n}],1],{n,120}] (* Harvey P. Dale, Aug 18 2022 *)
Comments