A317878 Number of free pure symmetric identity multifunctions with one atom and n positions.
1, 0, 1, 0, 2, 1, 5, 5, 15, 23, 54, 98, 212, 420, 886, 1822, 3838, 8046, 17029, 36097, 76889, 164245, 351971, 756341, 1629389, 3518643, 7614717, 16512962, 35875986, 78082171, 170219300, 371651968, 812624721, 1779240627, 3900634491, 8561723769, 18814112811
Offset: 1
Keywords
Examples
The a(8) = 5 SIMs: o[o[o,o[o]]] o[o,o[o[o]]] o[o,o[o][o]] o[o][o,o[o]] o[o,o[o]][o]
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Crossrefs
Programs
-
Mathematica
allIdPMFOL[n_]:=If[n==1,{"o"},Join@@Cases[Table[PR[k,n-k-1],{k,n-2}],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{allIdPMFOL[h],Select[Union[Sort/@Tuples[allIdPMFOL/@p]],UnsameQ@@#&]}],{p,IntegerPartitions[g]}]]]; Table[Length[allIdPMFOL[n]],{n,12}]
-
PARI
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)} seq(n)={my(v=[1]); for(n=2, n, my(t=WeighT(v)); v=concat(v, sum(k=1, n-2, v[k]*t[n-k-1]))); v} \\ Andrew Howroyd, Aug 19 2018
Extensions
Terms a(13) and beyond from Andrew Howroyd, Aug 19 2018
Comments