A317880 Number of series-reduced free pure symmetric identity multifunctions (with empty expressions allowed) with one atom and n positions.
1, 1, 1, 1, 2, 4, 8, 16, 33, 70, 152, 333, 735, 1635, 3668, 8285, 18823, 42970, 98535, 226870, 524290, 1215641, 2827203, 6593432, 15416197, 36129894, 84860282, 199719932, 470930802, 1112388190, 2631903295, 6236669381, 14800078408, 35169529363, 83680908692
Offset: 1
Keywords
Examples
The a(7) = 8 SROIs: o[o,o[][][]] o[o[],o[][]] o[][o,o[][]] o[][][o,o[]] o[o,o[][]][] o[][o,o[]][] o[o,o[]][][] o[][][][][][]
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Crossrefs
Programs
-
Mathematica
allIdExprSR[n_]:=If[n==1,{"o"},Join@@Cases[Table[PR[k,n-k-1],{k,n-1}],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{allIdExprSR[h],Select[Union[Sort/@Tuples[allIdExprSR/@p]],UnsameQ@@#&]}],{p,If[g==0,{{}},Rest[IntegerPartitions[g]]]}]]]; Table[Length[allIdExprSR[n]],{n,12}]
-
PARI
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)} seq(n)={my(v=[1]); for(n=2, n, my(t=WeighT(v)-v); v=concat(v, v[n-1] + sum(k=1, n-2, v[k]*t[n-k-1]))); v} \\ Andrew Howroyd, Aug 19 2018
Extensions
Terms a(13) and beyond from Andrew Howroyd, Aug 19 2018
Comments