A317881 Number of series-reduced free pure identity multifunctions (with empty expressions allowed) with one atom and n positions.
1, 1, 1, 1, 3, 7, 15, 37, 91, 231, 593, 1557, 4111, 10941, 29295, 79087, 215015, 587463, 1611985, 4441473, 12284513, 34095797, 94931525, 265061363, 742029431, 2082310665, 5856540305, 16505796865, 46608877763, 131850193107, 373612733107, 1060339387939, 3013758348317
Offset: 1
Keywords
Examples
The a(6) = 7 SRIMs: o[o[][],o] o[o,o[][]] o[][o[],o] o[][o,o[]] o[o[],o][] o[o,o[]][] o[][][][][]
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Crossrefs
Programs
-
Mathematica
allIdExprSR[n_]:=If[n==1,{"o"},Join@@Cases[Table[PR[k,n-k-1],{k,n-1}],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{allIdExprSR[h],Select[Tuples[allIdExprSR/@p],UnsameQ@@#&]}],{p,If[g==0,{{}},Join@@Permutations/@Rest[IntegerPartitions[g]]]}]]]; Table[Length[allIdExprSR[n]],{n,12}]
-
PARI
seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, my(p=prod(k=1, n, 1 + sum(i=1, n\k, binomial(v[k], i)*x^(i*k)*y^i) + O(x*x^n))); v[n]=v[n-1]+sum(k=1, n-2, v[n-k-1]*(subst(serlaplace(y^0*polcoef(p, k)), y, 1)-v[k]))); v} \\ Andrew Howroyd, Sep 01 2018
Extensions
Terms a(13) and beyond from Andrew Howroyd, Sep 01 2018
Comments