A317885 Number of series-reduced free pure achiral multifunctions with one atom and n positions.
1, 0, 0, 1, 1, 1, 2, 3, 4, 7, 9, 14, 21, 32, 45, 69, 103, 153, 224, 338, 500, 746, 1107, 1645, 2447, 3652, 5413, 8052, 11993, 17834, 26500, 39447, 58655, 87240, 129772, 193001, 287034, 427014, 635048, 944501, 1404910, 2089633, 3107864, 4622670, 6875533
Offset: 1
Keywords
Examples
The a(10) = 7 SRAMs: o[o[o,o],o[o,o]] o[o,o][o,o][o,o] o[o,o][o,o,o,o,o] o[o,o,o][o,o,o,o] o[o,o,o,o][o,o,o] o[o,o,o,o,o][o,o] o[o,o,o,o,o,o,o,o]
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
Crossrefs
Programs
-
Mathematica
a[n_]:=If[n==1,1,Sum[a[k]*Sum[a[d],{d,Most[Divisors[n-k-1]]}],{k,n-2}]]; Array[a,12]
-
PARI
seq(n)={my(p=O(x)); for(n=1, n, p = x + p*x*sum(k=2, n-2, subst(p + O(x^(n\k+1)), x, x^k)) + O(x*x^n)); Vec(p)} \\ Andrew Howroyd, Aug 19 2018
-
PARI
seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=sum(i=1, n-2, v[i]*sumdiv(n-i-1, d, if(d
Andrew Howroyd, Aug 19 2018
Formula
a(1) = 1; a(n > 1) = Sum_{0 < k < n - 1} a(k) * Sum_{d|(n - k - 1), d < n - k - 1} a(d).
Extensions
Terms a(17) and beyond from Andrew Howroyd, Aug 19 2018
Comments