A317927 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A005187.
1, 3, 2, 19, 4, 2, 11, 63, 6, 3, 19, 13, 23, 17, 5, 867, 16, 4, 35, 5, 17, 25, 21, 11, 31, 29, 13, 113, 27, 13, 57, 3069, 13, 9, 23, 25, 71, 41, 14, 69, 79, 33, 41, 169, 9, 25, 89, 615, 259, 53, 17, 197, 51, 25, 29, 389, 20, 31, 113, 59, 117, 67, 10, 22199, 18, 14, 131, 31, 51, 71, 69, 11, 143, 77, 22, 281, 91, 35, 153, 489, 71, 85, 81, 151, 19
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Programs
-
PARI
A005187(n) = { my(s=n); while(n>>=1, s+=n); s; }; A317927perA317928(n) = if(1==n,n,(A005187(n)-sumdiv(n,d,if((d>1)&&(d
A317927perA317928(d)*A317927perA317928(n/d),0)))/2); A317927(n) = numerator(A317927perA317928(n)); -
PARI
\\ Memoized implementation: memo = Map(); A317927perA317928(n) = if(1==n,n,if(mapisdefined(memo,n),mapget(memo,n),my(v = (A005187(n)-sumdiv(n,d,if((d>1)&&(d
A317927perA317928(d)*A317927perA317928(n/d),0)))/2); mapput(memo,n,v); (v)));
Formula
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A005187(n) - Sum_{d|n, d>1, d 1.
Comments