A317931 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A002487, Stern's Diatomic sequence.
1, 1, 1, 3, 3, 1, 3, 5, 3, 3, 5, 3, 5, 3, 1, 35, 5, 3, 7, 9, 5, 5, 7, 5, 19, 5, 5, 9, 7, 1, 5, 63, 1, 5, 9, 9, 11, 7, 5, 15, 11, 5, 13, 15, 13, 7, 9, 35, 27, 19, 7, 15, 13, 5, 7, 15, 3, 7, 11, 3, 9, 5, -7, 231, -1, 1, 11, 15, 7, 9, 13, 15, 15, 11, 47, 21, 19, 5, 13, 105, 27, 11, 19, 15, 27, 13, 11, 25, 17, 13, 23, 21, 11, 9, 1, 63
Offset: 1
Links
Crossrefs
Programs
-
PARI
A002487(n) = { my(a=1, b=0); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); (b); }; \\ From A002487 A317931perA317932(n) = if(1==n,n,(A002487(n)-sumdiv(n,d,if((d>1)&&(d
A317931perA317932(d)*A317931perA317932(n/d),0)))/2); A317931(n) = numerator(A317931perA317932(n)); -
PARI
\\ Memoized implementation: memo = Map(); A317931perA317932(n) = if(1==n,n,if(mapisdefined(memo,n),mapget(memo,n),my(v = (A002487(n)-sumdiv(n,d,if((d>1)&&(d
A317931perA317932(d)*A317931perA317932(n/d),0)))/2); mapput(memo,n,v); (v)));
Formula
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A002487(n) - Sum_{d|n, d>1, d 1.