A317932 Denominators of certain "Dirichlet Square Root" sequences: a(n) = A046644(n)/(2^A007949(n)).
1, 2, 1, 8, 2, 2, 2, 16, 2, 4, 2, 8, 2, 4, 2, 128, 2, 4, 2, 16, 2, 4, 2, 16, 8, 4, 2, 16, 2, 4, 2, 256, 2, 4, 4, 16, 2, 4, 2, 32, 2, 4, 2, 16, 4, 4, 2, 128, 8, 16, 2, 16, 2, 4, 4, 32, 2, 4, 2, 16, 2, 4, 4, 1024, 4, 4, 2, 16, 2, 8, 2, 32, 2, 4, 8, 16, 4, 4, 2, 256, 8, 4, 2, 16, 4, 4, 2, 32, 2, 8, 4, 16, 2, 4, 4, 256, 2, 16, 4, 64, 2, 4, 2, 32, 4
Offset: 1
Links
Crossrefs
Programs
-
PARI
\\ Original program, based on conjectural formula: A002487(n) = { my(a=1, b=0); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); (b); }; \\ From A002487 A317931perA317932(n) = if(1==n,n,(A002487(n)-sumdiv(n,d,if((d>1)&&(d
A317931perA317932(d)*A317931perA317932(n/d),0)))/2); A317932(n) = denominator(A317931perA317932(n)); -
PARI
\\ New fast program implementing the new definition: A005187(n) = { my(s=n); while(n>>=1, s+=n); s; }; A046644(n) = factorback(apply(e -> 2^A005187(e),factor(n)[,2])); A317932(n) = (A046644(n)/2^valuation(n,3)); \\ Antti Karttunen, Aug 31 2018
-
PARI
A011371(n) = (A005187(n)-n); A317932(n) = { my(f = factor(n), m=1); for(i=1, #f~, if(3 == f[i,1], m *= 2^(A011371(f[i,2])), m *= 2^A005187(f[i,2]))); (m); }; \\ Antti Karttunen, Sep 03 2018
Formula
Extensions
Definition changed, the original (now conjectured alternative definition) moved to the comments section by Antti Karttunen, Aug 31 2018
Keyword:mult added by Antti Karttunen, Sep 03 2018
Comments