cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317936 Numerators of sequence whose Dirichlet convolution with itself yields A100995 + A063524, that is, the characteristic function of A000961 (prime powers).

Original entry on oeis.org

1, 1, 1, 7, 1, -1, 1, 17, 7, -1, 1, -5, 1, -1, -1, 139, 1, -5, 1, -5, -1, -1, 1, -5, 7, -1, 17, -5, 1, 3, 1, 263, -1, -1, -1, -31, 1, -1, -1, -5, 1, 3, 1, -5, -5, -1, 1, 19, 7, -5, -1, -5, 1, -5, -1, -5, -1, -1, 1, 9, 1, -1, -5, 995, -1, 3, 1, -5, -1, 3, 1, -53, 1, -1, -5, -5, -1, 3, 1, 19, 139, -1, 1, 9, -1, -1, -1, -5, 1, 9
Offset: 1

Views

Author

Antti Karttunen, Aug 14 2018

Keywords

Crossrefs

Cf. A000961, A100995, A046644 (denominators).
Cf. also A317939.

Programs

  • PARI
    up_to = 65537;
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v317936aux = DirSqrt(vector(up_to, n, if(1==n,1,isprimepower(n))));
    A317936(n) = numerator(v317936aux[n]);
    for(n=1,up_to,write("b317936.txt", n, " ", A317936(n)));

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A100995(n) - Sum_{d|n, d>1, d 1.