cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A317943 Filter sequence constructed from the coefficients of the Stern polynomials B(d,t) collected for each proper divisor d of n; Restricted growth sequence transform of A317942.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 18, 19, 20, 2, 21, 2, 22, 23, 24, 25, 26, 2, 27, 28, 29, 2, 30, 2, 31, 32, 33, 2, 34, 35, 36, 37, 38, 2, 39, 40, 41, 42, 43, 2, 44, 2, 45, 46, 47, 48, 49, 2, 50, 51, 52, 2, 53, 2, 54, 55, 56, 57, 58, 2, 59, 60, 61, 2, 62, 63, 64, 65, 66, 2, 67, 68, 69, 70, 71, 72, 73, 2, 74, 75, 76, 2, 77, 2, 78, 79, 80, 2, 81, 2, 82, 83, 84, 2, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 86
Offset: 1

Views

Author

Antti Karttunen, Aug 12 2018

Keywords

Comments

For all i, j: a(i) = a(j) => A317837(i) = A317837(j).

Examples

			Proper divisors of 115 are 1, 5 and 23 and proper divisors of 125 are 1, 5 and 25. The divisors 1 and 5 occur in both, while for the Stern polynomials B(23,t) and B(25,t) (see A125184) the nonzero coefficients are {1, 2, 3, 1} and {1, 3, 2, 1}, that is, they are equal as multisets, thus A286378(23) = A286378(25). From this follows that a(115) = a(125).
		

Crossrefs

Cf. also A293217, A305793.
Differs from A305800 and A296073 for the first time at n=125, where a(125) = 86.

Programs

  • PARI
    \\ Needs also code from A286378:
    up_to = 65537;
    A317942(n) = { my(m=1); fordiv(n,d,if(dA286378(d)-1))); (m); };
    v317943 = rgs_transform(vector(up_to, n, A317942(n)));
    A317943(n) = v317943[n];

A286378 Restricted growth sequence computed for Stern-polynomial related filter-sequence A278243.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 3, 5, 2, 6, 4, 7, 3, 8, 5, 9, 2, 10, 6, 11, 4, 12, 7, 13, 3, 13, 8, 14, 5, 15, 9, 16, 2, 17, 10, 18, 6, 19, 11, 20, 4, 21, 12, 22, 7, 23, 13, 24, 3, 24, 13, 25, 8, 26, 14, 27, 5, 28, 15, 29, 9, 30, 16, 31, 2, 32, 17, 33, 10, 34, 18, 35, 6, 36, 19, 37, 11, 38, 20, 39, 4, 40, 21, 41, 12, 42, 22, 43, 7, 44, 23, 45, 13, 46, 24, 47, 3, 47, 24, 48
Offset: 0

Views

Author

Antti Karttunen, May 09 2017

Keywords

Comments

Construction: we start with a(0)=1 for A278243(0)=1, and then after, for n > 0, we use the least unused natural number k for a(n) if A278243(n) has not been encountered before, otherwise [whenever A278243(n) = A278243(m), for some m < n], we set a(n) = a(m).
When filtering sequences (by equivalence class partitioning), this sequence (with its modestly sized terms) can be used instead of A278243, because for all i, j it holds that: a(i) = a(j) <=> A278243(i) = A278243(j).
For example, for all i, j: a(i) = a(j) => A002487(i) = A002487(j).
For pairs of distinct primes p, q for which a(p) = a(q) see comments in A317945. - Antti Karttunen, Aug 12 2018

Examples

			For n=1, A278243(1) = 2, which has not been encountered before, thus we allot for a(1) the least so far unused number, which is 2, thus a(1) = 2.
For n=2, A278243(2) = 2, which was already encountered as A278243(1), thus we set a(2) = a(1) = 2.
For n=3, A278243(3) = 6, which has not been encountered before, thus we allot for a(3) the least so far unused number, which is 3, thus a(3) = 3.
For n=23, A278243(23) = 2520, which has not been encountered before, thus we allot for a(23) the least so far unused number, which is 13, thus a(23) = 3.
For n=25, A278243(25) = 2520, which was already encountered at n=23, thus we set a(25) = a(23) = 13.
		

Crossrefs

Cf. also A101296, A286603, A286605, A286610, A286619, A286621, A286622, A286626 for similarly constructed sequences.
Differs from A103391(1+n) for the first time at n=25, where a(25)=13, while A103391(26) = 14.

Programs

  • Mathematica
    a[n_] := a[n] = Which[n < 2, n + 1, EvenQ@ n, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &@ a[n/2], True, a[#] a[# + 1] &[(n - 1)/2]]; With[{nn = 100}, Function[s, Table[Position[Keys@ s, k_ /; MemberQ[k, n]][[1, 1]], {n, nn}]]@ Map[#1 -> #2 & @@ # &, Transpose@ {Values@ #, Keys@ #}] &@ PositionIndex@ Table[Times @@ MapIndexed[Prime[First@#2]^#1 &, Sort[FactorInteger[#][[All, -1]], Greater]] - Boole[# == 1] &@ a@ n, {n, 0, nn}]] (* Michael De Vlieger, May 12 2017 *)
  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(occurrences = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(occurrences,invec[i]), my(pp = mapget(occurrences, invec[i])); outvec[i] = outvec[pp] , mapput(occurrences,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A260443(n) = if(n<2, n+1, if(n%2, A260443(n\2)*A260443(n\2+1), A003961(A260443(n\2))));
    A278243(n) = A046523(A260443(n));
    v286378 = rgs_transform(vector(up_to+1,n,A278243(n-1)));
    A286378(n) = v286378[1+n];

A317944 a(n) = Product_{d|n, d>1} prime(A286378(d)-1).

Original entry on oeis.org

1, 2, 3, 4, 5, 18, 7, 8, 33, 50, 13, 108, 17, 98, 285, 16, 23, 2178, 29, 500, 651, 338, 37, 648, 185, 578, 1353, 1372, 43, 162450, 47, 32, 2067, 1058, 2065, 143748, 61, 1682, 3417, 5000, 71, 847602, 73, 8788, 247665, 2738, 83, 3888, 581, 68450, 6141, 19652, 97, 3661218, 6565, 19208, 8961, 3698, 107, 92596500, 109, 4418, 809193, 64
Offset: 1

Views

Author

Antti Karttunen, Aug 12 2018

Keywords

Crossrefs

Cf. A286378, A317942, A317945 (restricted growth sequence transform).
Cf. also A305794.

Programs

  • PARI
    \\ Needs also code from A286378:
    A317944(n) = { my(m=1); fordiv(n,d, if(d>1, m *= prime(A286378(d)-1))); (m); };

Formula

a(n) = Product_{d|n, d>1} A008578(A286378(d)).
For all k >= 0, a(2^k) = 2^k.
Showing 1-3 of 3 results.