A317974 a(n) = 2*(a(n-1)+a(n-2)+a(n-3))-a(n-4) for n >= 4, with initial terms 0,0,1,1.
0, 0, 1, 1, 4, 12, 33, 97, 280, 808, 2337, 6753, 19516, 56404, 163009, 471105, 1361520, 3934864, 11371969, 32865601, 94983348, 274506972, 793339873, 2292794785, 6626299912, 19150362168, 55345573857, 159951677089, 462268926316, 1335981992356, 3861059617665
Offset: 0
Links
- A.H.M. Smeets, Table of n, a(n) for n = 0..2172
- H. S. M. Coxeter, Loxodromic sequences of tangent spheres, Aequationes Mathematicae, 1.1-2 (1968): 104-121. See p. 112.
- Eric Weisstein's World of Mathematics, Coxeter's Loxodromic Sequence of Tangent Circles
- Index entries for linear recurrences with constant coefficients, signature (2,2,2,-1).
Programs
-
Mathematica
nxt[{a_,b_,c_,d_}]:={b,c,d,2(b+c+d)-a}; NestList[nxt,{0,0,1,1},30][[;;,1]] (* or *) LinearRecurrence[{2,2,2,-1},{0,0,1,1},40] (* Harvey P. Dale, Dec 10 2024 *)
-
PARI
concat(vector(2), Vec(x^2*(1 - x) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4) + O(x^40))) \\ Colin Barker, Sep 04 2018
-
Python
a1,a2,a3,a4,n = 1,1,0,0,3 print(0,0) print(1,0) print(2,1) print(3,1) while n < 2172: a1,a2,a3,a4,n = 2*(a1+a2+a3)-a4,a1,a2,a3,n+1 print(n,a1) # A.H.M. Smeets, Sep 04 2018
Formula
Lim {n -> infinity} log(a(n))/n = 1.0612750619050... = log(phi+sqrt(phi)) = log(A001622+A139339), where phi is the golden ratio. - A.H.M. Smeets, Sep 04 2018
G.f.: x^2*(1 - x) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4). - Colin Barker, Sep 04 2018