cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318026 Expansion of Product_{k>=1} 1/((1 - x^k)*(1 - x^(3*k))).

Original entry on oeis.org

1, 1, 2, 4, 6, 9, 16, 22, 33, 50, 70, 98, 143, 193, 266, 368, 493, 659, 892, 1170, 1543, 2035, 2642, 3422, 4448, 5694, 7294, 9334, 11839, 14982, 18968, 23812, 29868, 37410, 46598, 57924, 71953, 88913, 109728, 135212, 165991, 203407, 248986, 303706, 369939, 449967, 545820, 661038, 799629
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 13 2018

Keywords

Comments

Convolution of A000041 and A035377.
Convolution of A000712 and A137569.
Convolution inverse of A030203.
Number of partitions of n if there are 2 kinds of parts that are multiples of 3.

Examples

			a(4) = 6 because we have [4], [3, 1], [3', 1], [2, 2], [2, 1, 1] and [1, 1, 1, 1].
		

Crossrefs

Programs

  • Maple
    a:=series(mul(1/((1-x^k)*(1-x^(3*k))),k=1..55),x=0,49): seq(coeff(a,x,n),n=0..48); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 48; CoefficientList[Series[Product[1/((1 - x^k) (1 - x^(3 k))), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 48; CoefficientList[Series[1/(QPochhammer[x] QPochhammer[x^3]), {x, 0, nmax}], x]
    nmax = 48; CoefficientList[Series[Exp[Sum[x^k (1 + x^k + 2 x^(2 k))/(k (1 - x^(3 k))), {k, 1, nmax}]], {x, 0, nmax}], x]
    Table[Sum[PartitionsP[k] PartitionsP[n - 3 k], {k, 0, n/3}], {n, 0, 48}]

Formula

G.f.: exp(Sum_{k>=1} x^k*(1 + x^k + 2*x^(2*k))/(k*(1 - x^(3*k)))).
a(n) ~ exp(2*sqrt(2*n)*Pi/3) / (3 * 2^(5/4) * n^(5/4)). - Vaclav Kotesovec, Aug 14 2018