cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318047 a(n) = sum of values taken by all parking functions of length n.

Original entry on oeis.org

1, 8, 81, 1028, 15780, 284652, 5903464, 138407544, 3619892160, 104485268960, 3299177464704, 113120695539612, 4185473097734656, 166217602768452900, 7051983744002135040, 318324623296131263408, 15232941497754507165696, 770291040239888149405944, 41042353622873800536064000, 2298206207793743728251532020
Offset: 1

Views

Author

Yukun Yao, Aug 13 2018

Keywords

Examples

			Case n = 2: There are 3 parking functions of length 2: [1, 1], [1, 2], [2, 1]. Summing up all values gives 2 + 3 + 3 = 8, so a(2) = 8.
Case n = 3: There are 16 parking functions of length 3: [1, 1, 1], [1, 1, 2], [1, 1, 3], [1, 2, 1], [1, 2, 2], [1, 2, 3], [1, 3, 1], [1, 3, 2], [2, 1, 1], [2, 1, 2], [2, 1, 3], [2, 2, 1], [2, 3, 1], [3, 1, 1], [3, 1, 2], [3, 2, 1]. Summing up all values gives a total of 81, so a(3) = 81.
		

Crossrefs

Programs

  • Maple
    #Pnax(n,a,x): the sum of x^(sum of all entries in the parking function) over the set of a-parking functions of length n by recurrence relation.
    Pnax:=proc(n,a,x) local k:
    option remember:
    if n=0 then
      return 1:
    fi:
    if n>0 and a=0 then
      return 0:
    fi:
    return expand(x^n*add(binomial(n,k)*Pnax(n-k,a+k-1,x),k=0..n)):
    end:
    seq(subs(x = 1, diff(Pnax(n, 1, x), x)), n = 1 .. 20)
  • Mathematica
    T[n_, k_] := n Sum[Binomial[n-1, j-1] j^(j-2) (n-j+1)^(n-j-1), {j, k, n}];
    a[n_] := Sum[k T[n, k], {k, 1, n}];
    Array[a, 20] (* Jean-François Alcover, Aug 29 2018, after Andrew Howroyd *)
  • PARI
    \\ here T(n,k) is A298593.
    T(n,k)={n*sum(j=k, n, binomial(n-1, j-1)*j^(j-2)*(n+1-j)^(n-1-j))}
    a(n)={sum(k=1, n, k*T(n,k))} \\ Andrew Howroyd, Aug 17 2018

Formula

a(n) is the first derivative of P(n,1,x) evaluated at x = 1 where P(n,m,x) satisfies P(n,m,x) = x^n*Sum_{k=0..n} binomial(n,k)*P(n-k, m+k-1, x) with P(0,m,x) = 1 and P(n,0,x) = 0 for n > 0.
a(n) = Sum_{k=1..n} k*A298593(n, k). - Andrew Howroyd, Aug 17 2018

Extensions

Edited by Andrew Howroyd and N. J. A. Sloane, Aug 19 2018