cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A300623 Let b(1) = 1; for n >= 2, b(n) = n - b(t(n)) - b(n-t(n-1)) where t = A302128. a(n) = 2*b(n) - n.

Original entry on oeis.org

1, -2, 1, 0, 1, -2, -1, -2, 1, 2, -1, 0, 1, 0, 1, -2, -1, 2, 3, 2, 1, -2, -1, -4, -3, 2, 3, 0, 1, -4, -3, -4, -3, -2, 1, 2, -1, 0, 5, 6, 3, 4, -5, -4, -7, -6, -3, -2, -3, 2, 3, 2, 3, 2, 1, 0, 1, -2, -1, 4, 5, 2, 3, -8, -7, -10, -9, -4, -3, -6, -5, 8, 9, 6, 7, 10, 11, 10, 5, 6, 5, 6, -1, 0, -1, 0, -1, 0, 1, -2, -1, -4, -3
Offset: 1

Views

Author

Altug Alkan, Aug 14 2018

Keywords

Comments

Sequence has a fractal-like structure. Fibonacci numbers (A000045) are determinative for the generational boundaries.

Crossrefs

Programs

  • Maple
    t:= proc(n) option remember; `if`(n<4, 1,
          t(t(n-2)) +t(n-t(n-1)))
        end:
    b:= proc(n) option remember; `if`(n<2, 1,
          n -b(t(n)) -b(n-t(n-1)))
        end:
    seq(2*b(n)-n, n=1..100); # after Alois P. Heinz at A317686
  • Mathematica
    t[1]=t[2]=t[3]=1; t[n_] := t[n] = t[t[n-2]] + t[n - t[n-1]]; b[1]=1; b[n_] := b[n] = n - b[t[n]] - b[n - t[n-1]]; a[n_] := 2*b[n] - n; Array[a, 95] (* after Giovanni Resta at A317854 *)
  • PARI
    t=vector(99); t[1]=t[2]=t[3]=1; for(n=4, #t, t[n] = t[n-t[n-1]]+t[t[n-2]]); b=vector(99); b[1]=1; for(n=2, #b, b[n] = n-b[t[n]]-b[n-t[n-1]]); vector(99,k, 2*b[k]-k)
Showing 1-1 of 1 results.