cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318084 Numbers m such that sigma(sigma(m))/m is a square.

Original entry on oeis.org

1, 15, 50, 100, 168, 1023, 1444, 1470, 1600, 1944, 3179, 3822, 4000, 5120, 5776, 6174, 9025, 10752, 12348, 14440, 15125, 21970, 26250, 28416, 28665, 29127, 37544, 39200, 45630, 47151, 49392, 52500, 60984, 66125, 67200, 69819, 71485, 77175, 80000, 90250, 100254, 102300, 102400
Offset: 1

Views

Author

Michel Marcus, Aug 15 2018

Keywords

Comments

This is a necessary condition to have sigma(sigma(m))/sigma(m) = sigma(m)/m.
Are there other integers than 1, for which this is satisfied?
If m is an odd number such that sigma(sigma(m^2))/2 is a square, and p is in A000043 such that 2^p-1 does not divide sigma(m^2), then 2^(p-1)*m^2 is in the sequence. Such m include 5, 19, 161, 543, 1031, 1899, 3035, 6673. Thus if A000043 is infinite, so is this sequence. - Robert Israel, Aug 17 2018

Crossrefs

Programs

  • Maple
    filter:= proc(n) local t; t:= (numtheory:-sigma @@2)(n)/n; issqr(numer(t)) and issqr(denom(t)) end proc:select(filter, [$1..200000]); # Robert Israel, Aug 17 2018
  • Mathematica
    Select[Range[10^5], IntegerQ@ Sqrt[ DivisorSigma[1, DivisorSigma[1, #]] #] &] (* Giovanni Resta, Aug 19 2018 *)
  • PARI
    isok(n) = issquare(sigma(sigma(n))/n);