cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A318125 a(n) = [x^n] exp(Sum_{k>=1} (-1)^(k+1)*x^k*(1 + (n - 3)*x^k)/(k*(1 - x^k)^4)).

Original entry on oeis.org

1, 1, 3, 14, 54, 238, 1026, 4573, 20404, 91902, 415953, 1891908, 8638846, 39569655, 181766878, 836950153, 3861927937, 17853107055, 82668539290, 383360628369, 1780126898575, 8275908734103, 38517137597486, 179442212204245, 836741558761935, 3905012142470483
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 18 2018

Keywords

Comments

For n > 2, a(n) is the n-th term of the weigh transform of n-gonal pyramidal numbers.

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Exp[Sum[(-1)^(k + 1) x^k (1 + (n - 3) x^k)/(k (1 - x^k)^4), {k, 1, n}]], {x, 0, n}], {n, 0, 25}]

Formula

a(n) ~ c * d^n / sqrt(n), where d = 4.761510955746025663058811... and c = 0.2241869836397882024713... - Vaclav Kotesovec, Aug 19 2018

A320254 a(n) = n! * [x^n] exp(exp(x)*(x + (n/2 - 1)*x^2)).

Original entry on oeis.org

1, 1, 3, 16, 125, 1291, 16177, 241207, 4153193, 81082225, 1770989921, 42763506919, 1131353484637, 32541516492811, 1011058416700529, 33745374949198231, 1204107124715441873, 45741398365345761073, 1843069565594762478145, 78511973999963036415967, 3525468554804288803649381
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 08 2018

Keywords

Comments

For n > 2, a(n) is the n-th term of the exponential transform of n-gonal numbers.

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[Exp[x] (x + (n/2 - 1) x^2)], {x, 0, n}], {n, 0, 20}]

A320255 a(n) = n! * [x^n] log(1 + exp(x)*(x + (n/2 - 1)*x^2)).

Original entry on oeis.org

0, 1, 1, -1, -26, 39, 3666, -7400, -1488416, 3802113, 1322570530, -4095154284, -2187371499312, 7964242253473, 6052757424558586, -25343867475914910, -25988018018090461664, 123032891453320498449, 163684285184147641156098, -864557405968781387651984, -1448111703094244548802632160
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 08 2018

Keywords

Comments

For n > 2, a(n) is the n-th term of the logarithmic transform of n-gonal numbers.

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Log[1 + Exp[x] (x + (n/2 - 1) x^2)], {x, 0, n}], {n, 0, 20}]
Showing 1-3 of 3 results.