cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318127 Expansion of (1/(1 - x)) * Product_{k>=1} 1/(1 - k*x^k/(1 - x)^k).

Original entry on oeis.org

1, 2, 6, 19, 61, 191, 588, 1785, 5351, 15868, 46628, 135921, 393318, 1130538, 3229753, 9175347, 25931605, 72936434, 204223348, 569427145, 1581458917, 4375905243, 12065914843, 33160240020, 90848002909, 248154744196, 675932128695, 1836182233332, 4975249827916, 13447775233746
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 18 2018

Keywords

Comments

Binomial transform of A006906.

Crossrefs

Programs

  • Maple
    a:=series(1/(1-x)*mul(1/(1-k*x^k/(1-x)^k),k=1..100),x=0,30): seq(coeff(a,x,n),n=0..29); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 29; CoefficientList[Series[1/(1 - x) Product[1/(1 - k x^k/(1 - x)^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 29; CoefficientList[Series[1/(1 - x) Exp[Sum[Sum[j^k x^(k j)/(k (1 - x)^(k j)), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]
    Table[Sum[Binomial[n, k] Total[Times @@@ IntegerPartitions[k]], {k, 0, n}], {n, 0, 29}]

Formula

G.f.: (1/(1 - x))*exp(Sum_{k>=1} Sum_{j>=1} j^k*x^(k*j)/(k*(1 - x)^(k*j))).
a(n) = Sum_{k=0..n} binomial(n,k)*A006906(k).
a(n) ~ c * (1 + 3^(1/3))^n, where c = 97923.037496367052161042295948902147352859984491653037730624387144966464... = 1/((3^(1/3) - 1) * (3^(2/3) - 2)) * Product_{k>=4} 1/(1 - k/3^(k/3)). - Vaclav Kotesovec, Aug 19 2018