A318131 Number of non-isomorphic sets of finite (possibly empty) sets with union {1,2,...,n} and intersection {}.
1, 1, 6, 60, 3836, 37325360, 25626412263611792, 67516342973185974276922865448446208, 2871827610052485009904013737758920847534777143951264797898686184985092096
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(2) = 6 sets of sets: {{1},{2}} {{},{1,2}} {{},{1},{2}} {{},{1},{1,2}} {{1},{2},{1,2}} {{},{1},{2},{1,2}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..12
Crossrefs
Programs
-
Mathematica
sysnorm[m_]:=If[Union@@m!=Range[Max@@Flatten[m]],sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[sysnorm[m,1]]]];sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]]; Table[Length[Union[sysnorm/@Select[Subsets[Subsets[Range[n]]],And[Union@@#===Range[n],Intersection@@#=={}]&]]],{n,4}]
Formula
Extensions
a(5) onwards from Andrew Howroyd, Jan 29 2024